The Relational Model

An Informal Introduction

Olaf Hartig

David R. Cheriton School of Computer Science
University of Waterloo

CS 640

Principles of Database Management and Use Winter 2013

These slides are based on a slide set provided by Prof. M. Tamer Öszu.

CS 640

Relational Model I

Winter 2013 1 / 12

Notes

The Relational Model

- was proposed in 1969 by Edgar F. Codd;
- is a data model for the logical level, that
 - comes with a well-defined theory, and
 - abstracts from any particular implementation details;
- supports a high degree of data independence;
- supports semantic integrity constraints;
- supports powerful and declarative query/update languages;
- organizes data in flat, table-like structures (called relations).

CS 640

Relational Model I

Winter 2013 2 / 12

A Relation (Informally)

BandMembers

Musician	Instrument	Band	From	Until
Ringo Starr	Drums	The Beatles	1962	1970
Paul McCartney	Bass	The Beatles	1961	1970
Paul McCartney	Guitar	The Quarrymen	1957	1960
Lars Frederiksen	Guitar	Bancid	1993	present

Relation Scheme: $R(A_1, A_2, ..., A_k)$ with

- R is the relation name
- A_1, \ldots, A_k are attributes (with distinct names)

Relation Instance: a set $I \subseteq dom(A_1) \times \cdots \times dom(A_k)$

• Each element $u \in I$ is called a *tuple*.

Database Scheme: set of uniquely-named relation schemes

Database Instance: a relation instance for each relation scheme

CS 640 Relational Model I Winter 2013 3 / 12

otes			
otes			

Properties of Relation Schemes and Instances Notes Degree: Number of attributes in scheme (also called arity) Cardinality: Number of tuples in instance · Attribute ordering: not strictly necessary • Value oriented: tuples identified by attribute values • Instance has set semantics: • No ordering among tuples • No duplicate tuples First Normal Form (1NF): All attribute values are atomic CS 640 Relational Model I Winter 2013 4 / 12 Integrity Constraints Notes A relational scheme captures only the structure of relations Idea When we specify a scheme, we specify additional conditions -called integrity constraints- that must hold for any possible instance. · Primary key constraints · Foreign key constraints · Functional dependencies • etc. CS 640 Relational Model I Winter 2013 5 / 12 Primary Key Constraints (Informally) Notes Superkey: a set of attributes for which no pair of distinct tuples in the relation will ever agree on the corresponding values (Candidate) Key: a minimal superkey (a minimal set of attributes that uniquely identifies a tuple) Primary Key: a designated candidate key

CS 640 Relational Model I Winter 2013 6 / 12

Example:

author(aid , name)
wrote(author, publication)
publication(pubid, title)

Foreign Key Constraints (Informally)

Foreign key: Attribute(s) of one relation used for referring to tuples in another relation (i.e. a "logical pointer").

- Foreign key attribute(s) must correspond to primary key attribute(s) of the referenced relation
- Attribute names may differ

Referential integrity: Tuples with a foreign key that does not match the primary key of a tuple in the referenced relation are not allowed

Example:

```
author( aid , name )
wrote( author, publication )
   FOREIGN KEY (author) REFERENCES author(aid)
   FOREIGN KEY (publication) REFERENCES publication(pubid)
publication( pubid, title )
```

CS 640

Relational Model I

Winter 2013 7 / 12

Notes

Functional Dependencies (Informally)

Functional Dependency (FD): $X \rightarrow Y$ requires that if two tuples agree on the values for attributes in X, they must also agree on the values for attributes in Y.

Example:

- Consider a scheme: EmpProj(SIN, PNum, EName, PName, Loc)
- SIN functionally determines employee name:

 $\{ SIN \} \rightarrow \{ EName \}$

(i.e. tuples with the same SIN must also have the same EName)

• Project number determines project name and location:

 $\{ PNum \} \rightarrow \{ PName, Loc \}$

Note

Functional dependencies can be used to identify (candidate) keys.

CS 640

Relational Model I

Winter 2013 8 / 12

Functional Dependencies (cont'd)

Relation Schema: A relation scheme $R(A_1, A_2, ..., A_k)$ together with a set of functional dependencies defined over this scheme.

Database Schema: set of uniquely-named relation schemas

3.T .		
Notes		
Notes		

CS 640 Relational Model I Winter 2013 9 / 12

Integrity Constraints Revisited

- A database instance is invalid if it violates an integrity constraint
- DBMS should enforce integrity constraints

Note

The specification of integrity constraints is a design decision.

Advantages of using integrity constraints:

- Ensure data entry/modification respects database design
 - Shift responsibility from applications to DBMS
- Protect a database from bugs in applications

CS 640

Relational Model I

Winter 2013 10 / 12

Relations vs. SQL Tables

Note

The standard language for interfacing with relational DBMSs is Structured Query Language (SQL). Unfortunately, there are a few important differences between the Relational Model and the data model used by SQL (and relational DBMSs).

Discrepancies between the relational model and the SQL data model:

- 1 Semantics of Instances
 - · Relations are sets of tuples
 - SQL tables are multisets (bags) of tuples (i.e. duplicates possible)
- Onknown values
 - SQL data model defines a particular value called null (intended to mean "unknown") which has some special properties (requires three-value logic)
 - no such thing in (the pure) relational model

Relational Model I

Winter 2013 11 / 12

Notes

Notes

-		

Summary and Outlook

- Basic structural elements:
 - relation scheme, attributes, attribute domains
 - relation instance, tuples, attribute values
- · Integrity constraints

(conditions that must be satisfied by any valid instance)

- primary key constraints (superkey, candidate key, primary key)
- foreign key constraints
- functional dependencies
- others; e.g. multivalued dependencies (not covered here)
- Next week:
 - · a formal view on the relational model
 - basics of (functional) dependency theory

CS 640 Relational Model I Winter 2013 12 / 12