Outline

- **Motivation**
- **Basics**
- **Defining Functional Dependencies**
- **Reasoning about Functional Dependencies**
- **Summary and Outlook**

Problems due to Badly Designed Schemas

<table>
<thead>
<tr>
<th>ProfID</th>
<th>Name</th>
<th>Rank</th>
<th>Room</th>
<th>LecID</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2125</td>
<td>Sokrates</td>
<td>C4</td>
<td>226</td>
<td>4052</td>
<td>Ethics</td>
<td>2</td>
</tr>
<tr>
<td>2132</td>
<td>Popper</td>
<td>C3</td>
<td>52</td>
<td>5041</td>
<td>Logics</td>
<td>4</td>
</tr>
<tr>
<td>2132</td>
<td>Popper</td>
<td>C3</td>
<td>52</td>
<td>5259</td>
<td>Databases</td>
<td>4</td>
</tr>
<tr>
<td>2238</td>
<td>Plato</td>
<td>C4</td>
<td>221</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

- **Redundancies:** Information about Popper appears multiple times
 (and, thus, wastes storage space and may cause anomalies)
- **Update Anomalies:** Raising Popper's rank requires multiple changes
- **Delete Anomalies:** Deleting the Ethics course deletes information about Sokrates
- **Insert Anomalies:** Inserting Plato without a lecture?
 (Notice, SQL NULL is unsuitable: Is it unknown whether Plato has a lecture or unknown what the lecture is?)
Designing Good Databases

- Relations should have semantic unity
- Information repetition and change anomalies should be avoided
- Avoid NULL as much as possible
 - Certainly avoid excessive NULLs
- Avoid unnecessary joins

Can we approach this problem more systematically?

Goals
- A methodology for evaluating schemas (detecting anomalies).
- A methodology for transforming bad schemas into good schemas (repairing anomalies).

Basic Definitions

Universe: DOM denotes the set of all possible values.
Attributes: \mathcal{U} denotes the set of all possible attributes.
 Each attribute $A \in \mathcal{U}$ has a domain $\text{dom}(A) \subseteq \text{DOM}$.

Tuple: A tuple on a set of attributes $R = \{A_1, \ldots, A_k\}$ is a mapping
 \[u : R \to (\text{dom}(A_1) \cup \ldots \cup \text{dom}(A_k)) \]
 such that $u(A) \in \text{dom}(A)$ for all $A \in R$.

Relation: A relation instance on a set of attributes $R = \{A_1, \ldots, A_k\}$ is a set of tuples on R.

Basic Definitions (Example)

<table>
<thead>
<tr>
<th>Publication</th>
<th>PubID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>Mathematical Logic</td>
</tr>
<tr>
<td></td>
<td>153</td>
<td>Query Languages</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Database Systems</td>
</tr>
</tbody>
</table>

Example Schema: Publication = (PubID, Title) with
 - $\text{dom}(\text{PubID}) = \text{Int}$
 - $\text{dom}(\text{Title}) = \text{Str}$
 (where Int and Str denote the sets of all integers and of all strings, respectively)

Example Instance: $I = \{u, v, w\}$ with
 - $u(\text{PubID}) = 3$ and $u(\text{Title}) = "\text{Mathematical Logic}"$
 - $v(\text{PubID}) = 153$ and $v(\text{Title}) = "\text{Query Languages}"$
 - $w(\text{PubID}) = 1$ and $w(\text{Title}) = "\text{Database Systems}"$
Some Further Notation

Let \(u \) be a tuple on a set of attributes \(R \) and let \(X \subseteq R \). Then \(u[|X|] \) denotes the restriction of \(u \) to \(X \). Hence, \(u[X] \) is a tuple on \(X \).

Example:

\[
\begin{align*}
\text{u:} & \quad \text{PubID} & \quad \text{Title} \\
& \quad 3 & \quad \text{Mathematical Logic}
\end{align*}
\]

\(\Rightarrow \)

\[
\begin{align*}
\text{u[|\{\text{PubID}\}|]:} & \quad \text{PubID} \\
& \quad 3
\end{align*}
\]

- Suppose \(u \) is a tuple on \(\text{Publication} = \{\text{PubID}, \text{Title}\} \) with \(u(\text{PubID}) = 3 \) and \(u(\text{Title}) = "\text{Mathematical Logic}".
- Let \(u' = u[\{|\text{PubID}\}|]. \)
- Then, still \(u'(\text{PubID}) = 3 \) but \(u'(\text{Title}) \) is undefined.

Keys Revisited

Superkey: a set of attributes for which no pair of distinct tuples in the relation will ever agree on the corresponding values

Definition

Let \(R \) be a set of attributes and let \(X \subseteq R \). \(X \) is a superkey of \(R \), if for any pair of tuples \(u, v \) on \(R \) it holds:

\[
\text{If } u \neq v, \text{ then } u[|X|] \neq v[|X|].
\]

Candidate Key: a minimal superkey

Definition

Let \(R \) be a set of attributes and let \(X \subseteq R \). \(X \) is a key of \(R \), if:

1. \(X \) is a superkey of \(R \), and
2. For all \(Y \subset X \): \(Y \) is not a superkey of \(R \).

Primary Key: a designated candidate key

Functional Dependencies Revisited

Functional Dependency (informally): \(X \rightarrow Y \) requires that if two tuples agree on the values for attributes in \(X \), they must also agree on the values for attributes in \(Y \).

Example:

\[
\begin{align*}
\text{ProfID} & \quad \text{Name} & \quad \text{Rank} & \quad \text{Room} & \quad \text{LecID} & \quad \text{Title} & \quad \text{Hours} \\
2125 & \quad \text{Sokrates} & \quad \text{C4} & \quad 226 & \quad 4052 & \quad \text{Ethics} & \quad 2 \\
2132 & \quad \text{Popper} & \quad \text{C3} & \quad 52 & \quad 5041 & \quad \text{Logics} & \quad 4 \\
2132 & \quad \text{Popper} & \quad \text{C3} & \quad 52 & \quad 5259 & \quad \text{Databases} & \quad 4
\end{align*}
\]

\(\{\text{ProfID}\} \rightarrow \{\text{Name}, \text{Rank}, \text{Room}\} \)

Some Terminology

- \(X \) functionally determines \(Y \) (or, simply \(X \) determines \(Y \)),
- \(Y \) functionally depends on \(X \) (or, simply \(Y \) depends on \(X \)),
- The functional dependency is trivial if \(Y \subseteq X \).
Functional Dependencies Revisited (cont’d)

Functional Dependency (informally): \(X \rightarrow Y \) requires that if two tuples agree on the values for attributes in \(X \), they must also agree on the values for attributes in \(Y \).

Definition

We call \(X \rightarrow Y \) a functional dependency over a set of attributes \(R \), if \(X, Y \subseteq R \).

A relational instance \(I \) on \(R \) satisfies this functional dependency if for any pair of tuples \(u \in I \) and \(v \in I \) it holds:

\[
\text{If } u[X] = v[X], \text{ then } u[Y] = v[Y].
\]

Functional Dependencies (Example)

ProfLectures

<table>
<thead>
<tr>
<th>ProfID</th>
<th>Name</th>
<th>Rank</th>
<th>Room</th>
<th>LecID</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2125</td>
<td>Sokrates</td>
<td>C4</td>
<td>226</td>
<td>4052</td>
<td>Ethics</td>
<td>2</td>
</tr>
<tr>
<td>2132</td>
<td>Popper</td>
<td>C3</td>
<td>52</td>
<td>5041</td>
<td>Logics</td>
<td>4</td>
</tr>
<tr>
<td>2132</td>
<td>Popper</td>
<td>C3</td>
<td>52</td>
<td>5259</td>
<td>Databases</td>
<td>4</td>
</tr>
</tbody>
</table>

\{ ProfID \} \rightarrow \{ Name, Rank \}
\{ ProfID \} \rightarrow \{ Room \}
\{ LecID \} \rightarrow \{ Title, Hours \}
\{ LecID \} \rightarrow \{ Title \}

Sets of Functional Dependencies

Definition

Let \(\Sigma = \{ \sigma_1, \ldots, \sigma_n \} \) be a set of FDs over attribute set \(R \), and let \(I \) be a relational instance on \(R \). \(I \) satisfies \(\Sigma \), if \(I \) satisfies all \(\sigma \in \Sigma \).

Definition

Let \(\Sigma \) be a set of FDs over attribute set \(R \), and let \(\sigma \) be an FD over \(R \). \(\Sigma \) implies \(\sigma \), denoted by

\[\Sigma \models \sigma, \]

if any relational instance \(I \) on \(R \) that satisfies \(\Sigma \), also satisfies \(\sigma \).

Example: Let \(\Sigma = \{ \{ \text{ProfID} \} \rightarrow \{ \text{Name, Room} \}, \{ \text{Room} \} \rightarrow \{ \text{Building} \} \}. \)

- Then, it is trivial to see: \(\Sigma \models \{ \text{ProfID} \} \rightarrow \{ \text{Room} \}. \)
- But it also holds that \(\Sigma \models \{ \text{ProfID} \} \rightarrow \{ \text{Building} \}. \)

How do we know what are all the additional FDs that are implied?
Closure of FD Sets

Definition
Let \(\Sigma \) be a set of FDs over attribute set \(R \).
The closure of \(\Sigma \), denoted by \(\Sigma^+ \), is the set of all FDs that are satisfied by every relational instance on \(R \) that satisfies \(\Sigma \).

\[
\Sigma^+ := \{ \sigma | \Sigma \vdash \sigma \}
\]

Properties:
- \(\Sigma \subseteq \Sigma^+ \)
- \(\Sigma^+ \) includes all those FDs over \(R \) that are trivial.
- \((\Sigma^+)^+ = \Sigma^+\)

Relationship to keys:
- Suppose \((R, \Sigma)\) is a relational schema (i.e. \(\Sigma \) are FDs over \(R \)).
- \(X \subseteq R \) is a superkey of this schema if and only if \(X \rightarrow R \subseteq \Sigma^+ \).

Reasoning About FDs

Logical implications can be derived by using inference rules called Armstrong's rules:

- **Reflexivity:** \(Y \subseteq X \implies X \rightarrow Y \)
- **Augmentation:** \(X \rightarrow Y \implies XZ \rightarrow YZ \)
- **Transitivity:** \(X \rightarrow Y, Y \rightarrow Z \implies X \rightarrow Z \)

We use \(XY \) as a short form for \(X \cup Y \).

These rules are:
- sound (anything derived from \(\Sigma \) is in \(\Sigma^+ \)) and
- complete (anything in \(\Sigma^+ \) can be derived from \(\Sigma \)).

Additional rules can be derived:
- **Union:** \(X \rightarrow Y, X \rightarrow Z \implies X \rightarrow YZ \)
- **Decomposition:** \(X \rightarrow YZ \implies X \rightarrow Y \)

Reasoning About FDs (Example)

Let \(\Sigma = \{ \{ \text{SIN}, \text{PNum} \} \rightarrow \{ \text{Hours} \}, \ 1 \)
\{ \text{PNum} \} \rightarrow \{ \text{PName}, \text{Loc} \}, \ 2 \)
\{ \text{Loc}, \text{Hours} \} \rightarrow \{ \text{Allowance} \} \} \). \ 3

A derivation of \(\{ \text{SIN}, \text{PNum} \} \rightarrow \{ \text{Allowance} \} \):

- using reflexivity: \(\{ \text{SIN}, \text{PNum} \} \rightarrow \{ \text{PNum} \} \) \ 4
- using transitivity of 4 and 2: \(\{ \text{SIN}, \text{PNum} \} \rightarrow \{ \text{PName}, \text{Loc} \} \) \ 5
- using decomposition of 5: \(\{ \text{SIN}, \text{PNum} \} \rightarrow \{ \text{Loc} \} \) \ 6
- using union of 1 and 6: \(\{ \text{SIN}, \text{PNum} \} \rightarrow \{ \text{Hours}, \text{Loc} \} \) \ 7
- using transitivity of 7 and 3: \(\{ \text{SIN}, \text{PNum} \} \rightarrow \{ \text{Allowance} \} \) \ 8

Reflexivity: \(Y \subseteq X \implies X \rightarrow Y \)

Augmentation: \(X \rightarrow Y \implies XZ \rightarrow YZ \)

Transitivity: \(X \rightarrow Y, Y \rightarrow Z \implies X \rightarrow Z \)

Union: \(X \rightarrow Y, X \rightarrow Z \implies X \rightarrow YZ \)

Decomposition: \(X \rightarrow YZ \implies X \rightarrow Y \)
Using the Closure of FD Sets?

Now we know how to compute Σ^+. Hence, we could use a set of FDs to compute a key.

(Recall: Suppose (R, Σ) is a relational schema (i.e. Σ are FDs over R). $X \subseteq R$ is a superkey of this schema if and only if $X \rightarrow R \in \Sigma^+$.)

Unfortunately, computing Σ^+ is intractable (the size of Σ^+ is exponential in the number of attributes).

Hold on, not all is lost...

Attribute Closure

Definition
Let Σ be a set of FDs over attribute set R, and let $X \subseteq R$.

The attribute closure of X w.r.t. Σ, denoted by $cl_\Sigma(X)$, is the maximum set of attributes functionally determined by X.

$$cl_\Sigma(X) := \{ A \mid \Sigma \vdash X \rightarrow \{ A \} \}$$

Theorem: $X \rightarrow Y \in \Sigma^+$ if and only if $Y \subseteq cl_\Sigma(X)$.

$cl_\Sigma(X)$ can be computed in polynomial time...

Computing Attribute Closures

```plaintext
function ComputeAttrClosure(X, \Sigma) begin
    X^+ := X;
    while there exists an FD $(Y \rightarrow Z) \in \Sigma$ such that
    (i) $Y \subseteq X^+$, and (ii) $Z \not\subseteq X^+$ do
        X^+ := X^+ \cup Z;
    end while;
    return X^+;
end
```
Computing Attribute Closures (Example)

Let \(R = \{ \text{SIN}, \text{PNum}, \text{EName}, \text{PName}, \text{Loc}, \text{Allowance} \} \)
and \(\Sigma = \{ \{ \text{SIN} \} \rightarrow \{ \text{EName} \}, 1 \}
\{ \text{PNum} \} \rightarrow \{ \text{PName}, \text{Loc} \}, 2 \}
\{ \text{Loc}, \text{Hours} \} \rightarrow \{ \text{Allowance} \} \}. 3 \)

Compute \(c_k(\{ \text{PNum}, \text{Hours} \}): \)

initially: \(X^+ = \{ \text{PNum}, \text{Hours} \} \)
using 2: \(X^+ = \{ \text{PNum}, \text{Hours}, \text{PName}, \text{Loc} \} \)
using 3: \(X^+ = \{ \text{PNum}, \text{Hours}, \text{PName}, \text{Loc}, \text{Allowance} \} \)

... while there exists an FD \((Y \rightarrow Z) \in \Sigma \) such that
(i) \(Y \subseteq X^+ \), and (ii) \(Z \not\subseteq X^+ \) do
\(X^+ := X^+ \cup Z \);
end while; ...

Summary

- Basic structural elements:
 - relation scheme, attributes, attribute domains
 - relation instance, tuples, attribute values
- Primary key constraints (superkey, candidate key, primary key)
- Functional dependencies
- Using the attribute closure (and algorithm \textit{ComputeAttrClosure})
 we can
 - efficiently test implication (i.e. given a set \(\Sigma \) of FDs and an FD \(\sigma \),
 does \(\Sigma \models \sigma \) hold?)
 - and therefore we can efficiently compute all candidate keys.

Outlook

Recall:

\textbf{Goals}

1. A methodology for evaluating schemas (detecting anomalies).
2. A methodology for transforming bad schemas into good schemas (repairing anomalies).

- Normal forms
- Decomposition