
Normalization
Schema Decomposition, Normal Forms

Tamer Özsu

David R. Cheriton School of Computer Science

University of Waterloo

CS 640
Principles of Database Management and Use

Winter 2013

CS 640 Normalization Winter 2013 1 / 25

Outline

1 Schema Decomposition
Lossless-Join Decompositions
Dependency Preservation

2 Normal Forms based on FDs
Boyce-Codd Normal Form
Third Normal Form

CS 640 Normalization Winter 2013 2 / 25

Schema Decomposition

De�nition (Schema Decomposition)

Let R be a set of attributes.
A decomposition of R is a set fR1;R2; : : : ;Rng such that:

R = R1 [R2 [� � � [Rn :

A good decomposition does not

� lose information

� complicate checking of constraints

� contain anomalies (or at least contains fewer anomalies)

CS 640 Normalization Winter 2013 3 / 25

Notes

Notes

Notes

Lossless-Join Decompositions

We should be able to construct the instance of the original table from
the instances of the tables in the decomposition

Example: Consider replacing

Marks
Student Assignment Group Mark

Ann A1 G1 80
Ann A2 G3 60
Bob A1 G2 60

by decomposing (i.e. projecting) into two tables:

SGM
Student Group Mark

Ann G1 80
Ann G3 60
Bob G2 60

AM
Assignment Mark

A1 80
A2 60
A1 60

CS 640 Normalization Winter 2013 4 / 25

Lossless-Join Decompositions (cont.)

But computing the natural join of SGM and AM produces

Student Assignment Group Mark

Ann A1 G1 80
Ann A2 G3 60
Ann A1 G3 60
Bob A2 G2 60
Bob A1 G2 60

. . . and we get extra data (spurious tuples). We would therefore lose
information if we were to replace Marks by SGM and AM.

If re-joining SGM and AM would always produce exactly the tuples in
Marks, then we call SGM and AM a lossless-join decomposition.

CS 640 Normalization Winter 2013 5 / 25

Lossless-Join Decompositions (cont.)

A decomposition fR1;R2g of R is lossless if and only if the common
attributes of R1 and R2 form a superkey for either schema, that is

R1 \R2 ! R1 or R1 \R2 ! R2

Example: In the previous example we had

R = fStudent; Assignment; Group; Markg;

� =
�
fStudent; Assignment ! Group; Markg

	
;

R1 = fStudent; Group; Markg;

R2 = fAssignment; Markg:

Decomposition fR1;R2g is lossy because R1 \R2 = fMarkg is not a
superkey of either fStudent; Group; Markg or fAssignment; Markg.

CS 640 Normalization Winter 2013 6 / 25

Notes

Notes

Notes

Dependency Preservation

How do we test/enforce constraints on the decomposed schema?

Example: A table for a company database could be

R
Proj Dept Div

FD1: Proj ! Dept,
FD2: Dept ! Div, and
FD3: Proj ! Div

and two decompositions

D1 = {R1[Proj, Dept], R2[Dept, Div]}

D2 = {R1[Proj, Dept], R3[Proj, Div]}

Both are lossless. (Why?)

CS 640 Normalization Winter 2013 7 / 25

Dependency Preservation (cont.)

Which decomposition is better?

� Decomposition D1 lets us test FD1 on table R1 and FD2 on table
R2; if they are both satis�ed, FD3 is automatically satis�ed.

� In decomposition D2 we can test FD1 on table R1 and FD3 on
table R3. Dependency FD2 is an interrelational constraint:
testing it requires joining tables R1 and R3.

) D1 is better!

Let � be a set of functional dependencies over a set of attributes R.
A decomposition D = fR1; : : : ;Rng of R is dependency preserving

if there is an equivalent set of functional dependencies �0, none of
which is interrelational in D .

CS 640 Normalization Winter 2013 8 / 25

Normal Forms

What is a �good� relational database schema?

Rule of thumb: Independent facts in separate tables:

�Each relation schema should consist of a primary key
and a set of mutually independent attributes�

This is achieved by transforming a schema into a normal form.

Goals:

� Intuitive and straightforward transformation

� Anomaly-free/Nonredundant representation of data

Normal Forms based on Functional Dependencies:

� Boyce-Codd Normal Form (BCNF)

� Third Normal Form (3NF)

CS 640 Normalization Winter 2013 9 / 25

Notes

Notes

Notes

Normal Forms Based on FDs

1NF eliminates relations within relations or relations as attributes of
tuples

	 Second	 Normal	 Form	 (2NF)	 	 	

	 Third	 Normal	 Form	 (3NF)	

	 Boyce-‐Codd	 Normal	 Form	 (BCNF)	

	 First	 Normal	 Form	 (1NF)	
eliminate	 the	 par-al	 func-onal	
dependencies	 of	 non-‐prime	
a5ributes	 to	 key	 a5ributes	 	

eliminate	 the	 transi-ve	 	 func-onal	
dependencies	 of	 non-‐prime	
a5ributes	 to	 key	 a5ributes	 	

eliminate	 the	 par-al	 and	 transi-ve	 	
func-onal	 dependencies	 of	 prime	 (key)	
a5ributes	 to	 key.	 	

Lossless	 &	
Dependency	
preserving	

Lossless	

CS 640 Normalization Winter 2013 10 / 25

Boyce-Codd Normal Form (BCNF) - Informal

� BCNF formalizes the goal that in a good database schema,
independent relationships are stored in separate tables.

� Given a database schema and a set of functional dependencies for
the attributes in the schema, we can determine whether the
schema is in BCNF. A database schema is in BCNF if each of its
relation schemas is in BCNF.

� Informally, a relation schema is in BCNF if and only if any group
of its attributes that functionally determines any others of its
attributes functionally determines all others, i.e., that group of
attributes is a superkey of the relation.

CS 640 Normalization Winter 2013 11 / 25

Formal De�nition of BCNF

Let (R;�) be a relational schema (i.e. � are FDs over R).

This schema is in BCNF if and only if for each (X ! Y) 2 �+ it
holds that either

� (X ! Y) is trivial (i.e., Y � X), or

� X is a superkey of the schema.

A database schema is in BCNF if all of its relation schemas are in
BCNF.

CS 640 Normalization Winter 2013 12 / 25

Notes

Notes

Notes

BCNF and Redundancy

� Why does BCNF avoid redundancy? Consider:

Supplied_Items
Sno Sname City Pno Pname Price

� The following functional dependency holds:
fSnog ! fSname; Cityg

� Therefore, supplier name �Magna� and city �Ajax� must be
repeated for each item supplied by supplier S1.

� Assume a relational schema in BCNF that includes the above FD.
This implies that:

� Sno is a superkey for this schema
� each Sno value appears on one row only
� no need to repeat Sname and City values

CS 640 Normalization Winter 2013 13 / 25

Lossless-Join BCNF Decomposition

function DecomposeBCNF (R;�)

begin

Result := {R};
while some Ri 2 Result and (X ! Y) 2 �+

violate the BCNF condition do begin

Replace Ri by Ri � (Y �X);
Add {X ;Y } to Result;

end;
return Result;

end

CS 640 Normalization Winter 2013 14 / 25

Lossless-Join BCNF Decomposition

� No e�cient procedure to do this exists.

� Results depend on sequence of FDs used to decompose the
relations.

� It is possible that no lossless join dependency preserving BCNF
decomposition exists

� Consider R = {A, B, C} and � = {AB ! C, C ! B}.

CS 640 Normalization Winter 2013 15 / 25

Notes

Notes

Notes

BCNF Decomposition - An Example

� R = {Sno,Sname,City,Pno,Pname,Price}

� Functional dependencies:
Sno ! Sname,City
Pno ! Pname
Sno,Pno ! Price

� This schema is not in BCNF because, for example, Sno determines
Sname and City, but is not a superkey of R.

CS 640 Normalization Winter 2013 16 / 25

BCNF Decomposition - An Example (cont.)

Decomposition Diagram:
{Sno,Sname,City,Pno,Pname,Price}

{Sno,Sname,City}{Sno,Pno,Pname,Price}

{Sno,Pno,Price} {Pno,Pname}

Sno ï> Sname,City

Pno ï> Pname

� The complete schema is
now

R1 = {Sno,Sname,City}
R2 = {Sno,Pno,Price}
R3 = {Pno,Pname}

� This schema is a
lossless-join, BCNF
decomposition of the
original schema R.

CS 640 Normalization Winter 2013 17 / 25

Third Normal Form (3NF)

Let (R;�) be a relational schema (i.e. � are FDs over R).

This schema is in 3NF if and only if for each (X ! Y) 2 �+ it holds
that either

� (X ! Y) is trivial, or

� X is a superkey of the schema, or

� each attribute in Y �X is contained in a candidate key of R.

A database schema is in 3NF if all of its relation schemas are in 3NF.

� 3NF is looser than BCNF
� allows more redundancy
� e.g. R = {A, B, C} and � = {AB ! C, C ! B}.

� lossless-join, dependency-preserving decomposition into 3NF
relation schemas always exists.

CS 640 Normalization Winter 2013 18 / 25

Notes

Notes

Notes

Minimal Cover

De�nition: Two sets of functional dependencies � and � (over the
same set of attributes) are equivalent if and only if �+ = �+.

There are di�erent sets of functional dependencies that have the same
logical implications. Simple sets are desirable.

De�nition: A set of functional dependencies � is minimal if

1 every right-hand side of an FD in � is a single attribute, and

2 for no X ! A is the set �� fX ! Ag equivalent to �, and

3 for no X ! A and Z a proper subset of X is the set
�� fX ! Ag [fZ ! Ag equivalent to �.

Theorem: For every set of functional dependencies � there exists an
equivalent minimal set of functional dependencies (minimal cover).

CS 640 Normalization Winter 2013 19 / 25

Finding Minimal Covers

A minimal cover for � can be computed in three steps. Note that each
step must be repeated until it no longer succeeds in updating �.

Step 1.

Replace X ! YZ with the pair X ! Y and X ! Z .

Step 2.

Remove A from the left-hand-side of X ! B in � if
B is in ComputeAttrClosure

�
X � fAg;�

�
.

Step 3.

Remove X ! A from � if
A 2 ComputeAttrClosure

�
X ;�� fX ! Ag

�
.

CS 640 Normalization Winter 2013 20 / 25

Dependency-Preserving 3NF Decomposition

Idea: Decompose into 3NF relations and then �repair�

function Decompose3NF (R;�)

begin

Result := {R};
while some Ri 2 Result and (X ! Y) 2 �+

violate the 3NF condition do begin

Replace Ri by Ri � (Y �X);
Add {X ;Y} to Result;

end;

N := (a minimal cover for �) � (
S

i �i)
+

for each (X ! Y) 2 N do

Add {X ;Y} to Result;
end;
return Result;

end

CS 640 Normalization Winter 2013 21 / 25

Notes

Notes

Notes

Dep-Preserving 3NF Decomposition - An Example

� R = {Sno,Sname,City,Pno,Pname,Price}

� Functional dependencies:
Sno ! Sname,City Pno ! Pname
Sno,Pno ! Price Sno, Pname ! Price

� Following same decomposition tree as BCNF example:

R1 = {Sno,Sname,City}
R2 = {Sno,Pno,Price}
R3 = {Pno,Pname}

� Minimal cover:
Sno ! Sname Pno ! Pname
Sno ! City Sno, Pname ! Price

� Add relation to preserve missing dependency

R4 = {Sno, Pname, Price}

CS 640 Normalization Winter 2013 22 / 25

3NF Synthesis

A lossless-join 3NF decomposition that is dependency preserving can
be e�ciently computed

function Synthesize3NF (R;�)

begin

Result := ;;
� := a minimal cover for �;
for each (X ! Y) 2 � do

Result := Result [{XY };
if there is no Ri 2 Result such that

Ri contains a candidate key for R then begin

compute a candidate key K for R;
Result := Result [{K};

end;
return Result;

end

CS 640 Normalization Winter 2013 23 / 25

3NF Synthesis - An Example

� R = {Sno,Sname,City,Pno,Pname,Price}

� Functional dependencies:
Sno ! Sname,City Pno ! Pname
Sno,Pno ! Price Sno, Pname ! Price

� Minimal cover:
Sno ! Sname R1 = {Sno, Sname}
Sno ! City R2 = {Sno, City}
Pno ! Pname R3 = {Pno, Pname}
Sno, Pname ! Price R4 = {Sno, Pname, Price}

� Add relation for candidate key R5 = {Sno, Pno}

� Optimization: combine relations R1 and R2 (same key)

CS 640 Normalization Winter 2013 24 / 25

Notes

Notes

Notes

Summary

� Functional dependencies provide clues towards elimination of
(some) redundancies in a relational schema.

� Goals: to decompose relational schemas in such a way that the
decomposition is

(1) lossless-join
(2) dependency preserving
(3) BCNF (and if we fail here, at least 3NF)

CS 640 Normalization Winter 2013 25 / 25

Notes

Notes

Notes

	Schema Decomposition
	Lossless-Join Decompositions
	Dependency Preservation

	Normal Forms based on FDs
	Boyce-Codd Normal Form
	Third Normal Form

