Notes

A good decomposition does not

• lose information

CS 640

- complicate checking of constraints
- contain anomalies (or at least contains fewer anomalies)

Winter 2013 3 / 25

Lossless-Join Decompositions

We should be able to construct the instance of the original table from the instances of the tables in the decomposition

Example: Consider replacing

Marks			
Student	Assignment	Group	Mark
Ann	A1	G1	80
Ann	A2	G3	60
Bob	A1	G2	60

by decomposing (i.e. projecting) into two tables:

	SGM			AM		
	<u>Student</u>	Group	<u>Mark</u>	Assignment	<u>Mark</u>	
	Ann	G1	80	A1	80	
	Ann	G3	60	A2	60	
	Bob	G2	60	A1	60	
CS 640 Normalization Winter 2013				013		

Winter 2013 4 / 25

Lossless-Join Decompositions (cont.)

But computing the natural join of SGM and AM produces

Student	Assignment	Group	Mark
Ann	A1	G1	80
Ann	A2	G3	60
Ann	A1	G3	60
Bob	A2	G2	60
Bob	A1	G2	60

... and we get extra data (spurious tuples). We would therefore lose information if we were to replace Marks by SGM and AM.

If re-joining SGM	and AM would	l always produce	exactly the tuples in
Marks, then we ca	ll SGM and Al	M a lossless-join	decomposition.

CS 640 Normalization Winter 2013 5 / 25

Lossless-Join Decompositions (cont.)

A decomposition $\{R_1, R_2\}$ of R is lossless if and only if the common attributes of R_1 and R_2 form a superkey for either schema, that is

 $R_1\cap R_2 o R_1$ or $R_1\cap R_2 o R_2$

Example: In the previous example we had

- $R = \{$ Student, Assignment, Group, Mark $\},\$
- $\Sigma = \{ \{ \text{Student}, \text{Assignment} \rightarrow \text{Group}, \text{Mark} \} \},\$

 $R_1 = \{$ Student, Group, Mark $\},\$

 $R_2 = \{\text{Assignment, Mark}\}.$

Decomposition $\{R_1, R_2\}$ is lossy because $R_1 \cap R_2 = \{Mark\}$ is not a superkey of either {Student, Group, Mark} or {Assignment, Mark}.

Dependency Preservation

How do we test/enforce constraints on the decomposed schema?

Example: A table for a company database could be

R			$ ext{FD1: Proj} ightarrow ext{Dept},$
Proj	Dept	Div	FD2: Dept \rightarrow Div, and
			FD3: $Proj \rightarrow Div$

and two decompositions

 $D_1 = \{ R1[Proj, Dept], R2[Dept, Div] \}$ $D_2 = \{ \text{R1}[\text{Proj, Dept}], \text{R3}[\text{Proj, Div}] \}$

Both are lossless. (Why?)

CS 640

Dependency Preservation (cont.)

Which decomposition is *better*?

• Decomposition D_1 lets us test FD1 on table R1 and FD2 on table R2; if they are both satisfied, FD3 is automatically satisfied.

Normalization

• In decomposition D_2 we can test FD1 on table R1 and FD3 on table R3. Dependency FD2 is an interrelational constraint: testing it requires joining tables R1 and R3.

 $\Rightarrow D_1$ is better!

Winter 2013 7 / 25

Let Σ be a set of functional dependencies over a set of attributes R. A decomposition $D = \{R_1, \ldots, R_n\}$ of R is dependency preserving if there is an equivalent set of functional dependencies Σ' , none of which is interrelational in D.

CS 640 Normalization Winter 2013 8 / 25

Normal Forms

What is a "good" relational database schema? Rule of thumb: Independent facts in separate tables:

> "Each relation schema should consist of a primary key and a set of mutually independent attributes"

This is achieved by transforming a schema into a normal form.

Goals:

- Intuitive and straightforward transformation
- Anomaly-free/Nonredundant representation of data

Normal Forms based on Functional Dependencies:

• Boyce-Codd Normal Form (BCNF)

CS 640 Normalization

• Third Normal Form (3NF)

Winter 2013 9 / 25

Notes

Notes

Normal Forms Based on FDs

1NF eliminates relations within relations or relations as attributes of tuples

Notes

Boyce-Codd Normal Form (BCNF) - Informal

- BCNF formalizes the goal that in a good database schema, independent relationships are stored in separate tables.
- Given a database schema and a set of functional dependencies for the attributes in the schema, we can determine whether the schema is in BCNF. A database schema is in BCNF if each of its relation schemas is in BCNF.
- Informally, a relation schema is in BCNF if and only if any group of its attributes that functionally determines *any* others of its attributes functionally determines *all* others, i.e., that group of attributes is a superkey of the relation.

CS 640 Normalization

Winter 2013 11 / 25

Formal Definition of BCNF

Let (R, Σ) be a relational schema (i.e. Σ are FDs over R).

This schema is in BCNF if and only if for each $(X o Y) \in \Sigma^+$ it holds that either

- (X o Y) is trivial (i.e., $Y \subseteq X$), or
- X is a superkey of the schema.

CS 640

A database schema is in BCNF if all of its relation schemas are in BCNF.

Normalization

Notes

BCNF and Redundancy

Notes

• Why does BCNF avoid redundancy? Consider: Supplied_Items

<u>Sno</u> Sname City <u>Pno</u> Pname Price

```
• The following functional dependency holds:
```

 $\{\texttt{Sno}\} \rightarrow \{\texttt{Sname}, \texttt{City}\}$

- Therefore, supplier name "Magna" and city "Ajax" must be repeated for each item supplied by supplier S1.
- Assume a relational schema in BCNF that includes the above FD. This implies that:

Normalization

 $\bullet\,$ Sno is a superkey for this schema

CS 640

- each Sno value appears on one row only
- no need to repeat Sname and City values

Lossless-Join BCNF Decomposition

Notes

 $\begin{array}{l} \text{function } DecomposeBCNF(R,\Sigma) \\ \text{begin} \\ \text{Result} := \{R\}; \\ \text{while some } R_i \in \text{Result and } (X \to Y) \in \Sigma^+ \\ \text{violate the BCNF condition do begin} \\ \text{Replace } R_i \text{ by } R_i - (Y - X); \\ \text{Add } \{X,Y\} \text{ to Result;} \\ \text{end;} \\ \text{return Result;} \\ \text{end} \end{array}$

Normalization

CS 640

Winter 2013 14 / 25

Winter 2013 13 / 25

Lossless-Join BCNF Decomposition

Notes

• No efficient procedure to do this exists.

CS 640 Normalization

- Results depend on sequence of FDs used to decompose the relations.
- It is possible that no lossless join dependency preserving ${\tt BCNF}$ decomposition exists
 - Consider $R = \{A, B, C\}$ and $\Sigma = \{AB \rightarrow C, C \rightarrow B\}$.

BCNF Decomposition - An Example

Notes

- $R = \{$ Sno,Sname,City,Pno,Pname,Price $\}$
- Functional dependencies: Sno → Sname,City Pno → Pname Sno,Pno → Price

CS 640

• This schema is not in BCNF because, for example, Sno determines Sname and City, but is not a superkey of *R*.

Normalization

CS 640 Normalization

Winter 2013 17 / 25

Winter 2013 16 / 25

Third Normal Form (3NF)

Let (R, Σ) be a relational schema (i.e. Σ are FDs over R).

This schema is in $3{
m NF}$ if and only if for each $(X o Y) \in \Sigma^+$ it holds that either

- (X
 ightarrow Y) is trivial, or
- X is a superkey of the schema, or
- each attribute in Y X is contained in a candidate key of R.

A database schema is in 3NF if all of its relation schemas are in 3NF.

• 3NF is looser than BCNF

CS 640

- allows more redundancy
- e.g. $R = \{A, B, C\}$ and $\Sigma = \{AB \rightarrow C, C \rightarrow B\}$.
- lossless-join, dependency-preserving decomposition into 3NF relation schemas always exists.

Normalization

Winter 2013 18 / 25

Notes

Minimal Cover

Definition: Two sets of functional dependencies Σ and Γ (over the same set of attributes) are equivalent if and only if $\Sigma^+ = \Gamma^+$.

There are different sets of functional dependencies that have the same logical implications. Simple sets are desirable.

Definition: A set of functional dependencies $\boldsymbol{\Sigma}$ is minimal if

- (1) every right-hand side of an FD in Σ is a single attribute, and
- ${f o}$ for no X o A is the set $\Sigma-\{X o A\}$ equivalent to $\Sigma,$ and
- **3** for no $X \to A$ and Z a proper subset of X is the set $\Sigma \{X \to A\} \cup \{Z \to A\}$ equivalent to Σ .

Theorem: For every set of functional dependencies Σ there exists an equivalent minimal set of functional dependencies (minimal cover).

CS 640 Normalization

Winter 2013 19 / 25

Finding Minimal Covers

A minimal cover for Σ can be computed in three steps. Note that each step must be repeated until it no longer succeeds in updating Σ .

Normalization

Step 1. Replace $X \to YZ$ with the pair $X \to Y$ and $X \to Z$.

Step 2. Remove A from the left-hand-side of $X \to B$ in Σ if B is in Compute AttrClosure $(X - \{A\}, \Sigma)$.

Step 3. Remove $X \to A$ from Σ if

CS 640

CS 640

 $A \in ComputeAttrClosure(X, \Sigma - \{X \rightarrow A\}).$

Winter 2013 20 / 25

Winter 2013 21 / 25

Dependency-Preserving 3NF Decomposition

Idea: Decompose into 3NF relations and then "repair"

function $Decompose3NF(R, \Sigma)$ begin $Result := \{R\};$ while some $R_i \in Result$ and $(X \to Y) \in \Sigma^+$ violate the 3NF condition do begin $Replace R_i$ by $R_i - (Y - X);$ $Add \{X, Y\}$ to Result; end; $N := (a \ minimal \ cover \ for \ \Sigma) - (\bigcup_i \Sigma_i)^+$ for each $(X \to Y) \in N$ do $Add \{X, Y\}$ to Result; end; ret urn Result; end

Normalization

Notes

Notes

Dep-Preserving 3NF Decomposition - An Example

Notes

• $R = \{$ Sno,Sname,City,Pno,Pname,Price $\}$ • Functional dependencies: $Sno \rightarrow Sname, City$ $Pno \rightarrow Pname$ $Sno, Pno \rightarrow Price$ Sno, Pname \rightarrow Price • Following same decomposition tree as BCNF example: $R_1 = \{$ Sno,Sname,City $\}$ $R_2 = \{$ Sno,Pno,Price $\}$ $R_3 = \{Pno, Pname\}$ • Minimal cover: $\texttt{Pno} \to \texttt{Pname}$ $\texttt{Sno} \to \texttt{Sname}$ $\texttt{Sno}\,\rightarrow\,\texttt{City}$ $\texttt{Sno, Pname} \rightarrow \texttt{Price}$ • Add relation to preserve missing dependency $R_4 = \{$ Sno, Pname, Price $\}$

3NF Synthesis

CS 640

CS 640

A lossless-join 3NF decomposition that is dependency preserving can be efficiently computed

Normalization

function Synthesize $3NF(R, \Sigma)$ begin $Result := \emptyset;$ $\Delta := a minimal cover for \Sigma;$ for each $(X \to Y) \in \Delta$ do $Result := Result \cup \{XY\};$ if there is no $R_i \in Result$ such that R_i contains a candidate key for R then begin compute a candidate key K for R; $Result := Result \cup \{K\};$ end; ret urn Result;end

Normalization

3NF Synthesis - An Example

• $R = \{$ Sno,Sname,City,Pno,Pname,Price $\}$

- Add relation for candidate key $R_5 = \{$ Sno, Pno $\}$
- Optimization: combine relations R_1 and R_2 (same key)

Normalization

Notes

Winter 2013 22 / 25

Winter 2013 23 / 25

Winter 2013 24 / 25

Summary

Notes

- Functional dependencies provide clues towards elimination of (some) *redundancies* in a relational schema.
- Goals: to decompose relational schemas in such a way that the decomposition is
- (1) lossless-join
 (2) dependency preserving
 (3) BCNF (and if we fail here, at least 3NF)

CS 640 Normalization

Winter 2013 25 / 25

Notes