Normalization
Schema Decomposition, Normal Forms

Tamer Özsu
David R. Cheriton School of Computer Science
University of Waterloo

CS 640
Principles of Database Management and Use
Winter 2013

Outline

- **Schema Decomposition**
 - Lossless-Join Decompositions
 - Dependency Preservation

- **Normal Forms based on FDs**
 - Boyce-Codd Normal Form
 - Third Normal Form

Schema Decomposition

Definition (Schema Decomposition)

Let \(R \) be a set of attributes. A decomposition of \(R \) is a set \(\{ R_1, R_2, \ldots, R_n \} \) such that:

\[
R = R_1 \cup R_2 \cup \ldots \cup R_n.
\]

A good decomposition does not

- lose information
- complicate checking of constraints
- contain anomalies (or at least contains fewer anomalies)
Lossless-Join Decompositions

We should be able to construct the instance of the original table from the instances of the tables in the decomposition.

Example: Consider replacing

<table>
<thead>
<tr>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
</tr>
<tr>
<td>Ann</td>
</tr>
<tr>
<td>Ann</td>
</tr>
<tr>
<td>Bob</td>
</tr>
</tbody>
</table>

by decomposing (i.e. projecting) into two tables:

SGM	AM		
Student	Assignment	Group	Mark
Ann	A1	G1	80
Ann	A2	G3	60
Bob	A1	G2	60
	Assignment	Mark	
A1	80		
A2	60		

But computing the natural join of SGM and AM produces

| Student | Assignment | Group | Mark |
|---------|
| Ann | A1 | G1 | 80 |
| Ann | A2 | G3 | 60 |
| Ann | A1 | G3 | 60 |
| Bob | A2 | G2 | 60 |
| Bob | A1 | G2 | 60 |

... and we get extra data (spurious tuples). We would therefore lose information if we were to replace Marks by SGM and AM.

If re-joining SGM and AM would always produce exactly the tuples in Marks, then we call SGM and AM a lossless-join decomposition.

Lossless-Join Decompositions (cont.)

A decomposition \(\{ R_1, R_2 \} \) of \(R \) is lossless if and only if the common attributes of \(R_1 \) and \(R_2 \) form a superkey for either schema, that is

\[R_1 \cap R_2 \rightarrow R_1 \quad \text{or} \quad R_1 \cap R_2 \rightarrow R_2 \]

Example: In the previous example we had

\[R = \{ \text{Student, Assignment, Group, Mark} \}, \]

\[\Sigma = \{ (\text{Student, Assignment} \rightarrow \text{Group, Mark}) \}, \]

\[R_1 = \{ \text{Student, Group, Mark} \}, \]

\[R_2 = \{ \text{Assignment, Mark} \}. \]

Decomposition \(\{ R_1, R_2 \} \) is lossy because \(R_1 \cap R_2 = \{ \text{Mark} \} \) is not a superkey of either \(\{ \text{Student, Group, Mark} \} \) or \(\{ \text{Assignment, Mark} \} \).
Dependency Preservation

How do we test/enforce constraints on the decomposed schema?

Example: A table for a company database could be

<table>
<thead>
<tr>
<th></th>
<th>Proj</th>
<th>Dept</th>
<th>Div</th>
</tr>
</thead>
</table>

FD1: Proj → Dept,
FD2: Dept → Div, and
FD3: Proj → Div

and two decompositions

\[D_1 = \{ R1[Proj, Dept], R2[Dept, Div] \} \]

\[D_2 = \{ R1[Proj, Dept], R3[Proj, Div] \} \]

Both are lossless. (Why?)

Dependency Preservation (cont.)

Which decomposition is better?

- Decomposition \(D_1 \) lets us test FD1 on table \(R1 \) and FD2 on table \(R2 \); if they are both satisfied, FD3 is automatically satisfied.

- In decomposition \(D_2 \) we can test FD1 on table \(R1 \) and FD3 on table \(R3 \). Dependency FD2 is an inter-relational constraint: testing it requires joining tables \(R1 \) and \(R3 \).

\[\Rightarrow D_1 \text{ is better!} \]

Let \(\Sigma \) be a set of functional dependencies over a set of attributes \(R \).
A decomposition \(D = \{ R_1, \ldots, R_n \} \) of \(R \) is dependency preserving if there is an equivalent set of functional dependencies \(\Sigma' \), none of which is inter-relational in \(D \).

Normal Forms

What is a “good” relational database schema?

Rule of thumb: Independent facts in separate tables:

"Each relation schema should consist of a primary key and a set of mutually independent attributes"

This is achieved by transforming a schema into a normal form.

Goals:

- Intuitive and straightforward transformation
- Anomaly-free/Nonredundant representation of data

Normal Forms based on Functional Dependencies:

- Boyce-Codd Normal Form (BCNF)
- Third Normal Form (3NF)
Normal Forms Based on FDs

1NF eliminates relations within relations or relations as attributes of tuples

First Normal Form (1NF)
- eliminate the partial functional dependencies of non-prime attributes to key attributes

Second Normal Form (2NF)
- eliminate the transitive functional dependencies of non-prime attributes to key attributes

Third Normal Form (3NF)
- eliminate the partial and transitive functional dependencies of prime (key) attributes to key.

Boyce-Codd Normal Form (BCNF)

Boyce-Codd Normal Form (BCNF) - Informal

- BCNF formalizes the goal that in a good database schema, independent relationships are stored in separate tables.
- Given a database schema and a set of functional dependencies for the attributes in the schema, we can determine whether the schema is in BCNF. A database schema is in BCNF if each of its relation schemas is in BCNF.
- Informally, a relation schema is in BCNF if and only if any group of its attributes that functionally determines any others of its attributes functionally determines all others, i.e., that group of attributes is a superkey of the relation.

Formal Definition of BCNF

Let \((R, \Sigma)\) be a relational schema (i.e. \(\Sigma\) are FDs over \(R\)).

This schema is in BCNF if and only if for each \(X \rightarrow Y \in \Sigma^+\) it holds that either

- \((X \rightarrow Y)\) is trivial (i.e., \(Y \subseteq X\)), or
- \(X\) is a superkey of the schema.

A database schema is in BCNF if all of its relation schemas are in BCNF.
BCNF and Redundancy

- Why does BCNF avoid redundancy? Consider:

<table>
<thead>
<tr>
<th>Sno</th>
<th>Sname</th>
<th>City</th>
<th>Pno</th>
<th>Pname</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sno</td>
<td>Sname</td>
<td>City</td>
<td>Pno</td>
<td>Pname</td>
<td>Price</td>
</tr>
</tbody>
</table>

- The following functional dependency holds:
 \(\{\text{Sno}\} \rightarrow \{\text{Sname, City}\} \)

- Therefore, supplier name “Magna” and city “Ajax” must be repeated for each item supplied by supplier S1.

- Assume a relational schema in BCNF that includes the above FD. This implies that:
 - Sno is a superkey for this schema
 - Each Sno value appears on one row only
 - No need to repeat Sname and City values

Lossless-Join BCNF Decomposition

function \(\text{DecomposeBCNF}(R, \Sigma) \)
begin
 Result := \(\{ \text{R} \} \);
 while some \(\text{R}_i \in \text{Result} \) and \(\{X \rightarrow Y\} \in \Sigma^+ \) violate the BCNF condition do begin
 Replace \(\text{R}_i \) by \(\text{R}_i \cap \{X \rightarrow Y\} \);
 Add \(\{X, Y\} \) to Result;
 end;
 return Result;
end

- No efficient procedure to do this exists.
- Results depend on sequence of FDs used to decompose the relations.
- It is possible that no lossless join dependency preserving BCNF decomposition exists
 - Consider \(R = \{A, B, C\} \) and \(\Sigma = \{AB \rightarrow C, C \rightarrow B\} \).
BCNF Decomposition - An Example

- \(R = \{\text{Sno, Sname, City, Pno, Pname, Price}\} \)
- Functional dependencies:
 - \(\text{Sno} \rightarrow \text{Sname, City} \)
 - \(\text{Pno} \rightarrow \text{Pname} \)
 - \(\text{Sno, Pno} \rightarrow \text{Price} \)
- This schema is not in BCNF because, for example, \(\text{Sno} \) determines \(\text{Sname} \) and \(\text{City} \), but is not a superkey of \(R \).

BCNF Decomposition - An Example (cont.)

- **Decomposition Diagram:**
 - \(\{\text{Sno, Sname, City, Pno, Pname, Price}\} \)
 - \(\{\text{Sno, Sname, City}\} \)
 - \(\{\text{Sno, Pno, Price}\} \)
 - \(\{\text{Pno, Pname}\} \)
- The complete schema is now:
 - \(R_1 = \{\text{Sno, Sname, City}\} \)
 - \(R_2 = \{\text{Sno, Pno, Price}\} \)
 - \(R_3 = \{\text{Pno, Pname}\} \)
- This schema is a lossless-join, BCNF decomposition of the original schema \(R \).

Third Normal Form (3NF)

Let \((R, \Sigma) \) be a relational schema (i.e. \(\Sigma \) are FDs over \(R \)).

This schema is in 3NF if and only if for each \((X \rightarrow Y) \in \Sigma^+ \) it holds that either
- \((X \rightarrow Y) \) is trivial, or
- \(X \) is a superkey of the schema, or
- each attribute in \(Y - X \) is contained in a candidate key of \(R \).

A database schema is in 3NF if all of its relation schemas are in 3NF.

- 3NF is looser than BCNF
 - allows more redundancy
 - e.g. \(R = \{A, B, C\} \) and \(\Sigma = \{AB \rightarrow C, C \rightarrow B\} \).
 - lossless-join, dependency-preserving decomposition into 3NF relation schemas always exists.
Minimal Cover

Definition: Two sets of functional dependencies Σ and Γ (over the same set of attributes) are equivalent if and only if $\Sigma^+ = \Gamma^+$.

There are different sets of functional dependencies that have the same logical implications. Simple sets are desirable.

Definition: A set of functional dependencies Σ is minimal if
1. every right-hand side of an FD in Σ is a single attribute, and
2. for no $X \rightarrow A$ is the set $\Sigma - \{X \rightarrow A\}$ equivalent to Σ, and
3. for no $X \rightarrow A$ and Z a proper subset of X is the set $\Sigma - \{X \rightarrow A\} \cup \{Z \rightarrow A\}$ equivalent to Σ.

Theorem: For every set of functional dependencies Σ there exists an equivalent minimal set of functional dependencies (minimal cover).

Finding Minimal Covers

A minimal cover for Σ can be computed in three steps. Note that each step must be repeated until it no longer succeeds in updating Σ.

Step 1.
Replace $X \rightarrowYZ$ with the pair $X \rightarrow Y$ and $X \rightarrow Z$.

Step 2.
Remove A from the left-hand-side of $X \rightarrow B$ in Σ if B is in $\text{ComputeAttrClosure}(X - \{A\}, \Sigma)$.

Step 3.
Remove $X \rightarrow A$ from Σ if $A \in \text{ComputeAttrClosure}(X, \Sigma - \{X \rightarrow A\})$.

Dependency-Preserving 3NF Decomposition

Idea: Decompose into 3NF relations and then “repair”

```plaintext
function Decompose3NF(R, $\Sigma$)
begin
    Result := \{R\};
    while some $R_i \in Result$ and $(X \rightarrow Y) \in \Sigma^+$
        violating the 3NF condition do begin
        Replace $R_i$ by $R_i \cdot (Y \rightarrow X)$;
        Add $\{X, Y\}$ to Result;
    end;
    $N := (a \text{ minimal cover for } \Sigma) - (\bigcup_i \Sigma_i)^+$
    for each $(X \rightarrow Y) \in N$ do
        Add $\{X, Y\}$ to Result;
    end;
    return Result;
end
```

Dep-Preserving 3NF Decomposition - An Example

- \(R = \{ \text{Sno, Sname, City, Pno, Pname, Price} \} \)
- Functional dependencies:

 - \(\text{Sno} \rightarrow \text{Sname, City} \)
 - \(\text{Pno} \rightarrow \text{Pname} \)
 - \(\text{Sno, Pno} \rightarrow \text{Price} \)
 - \(\text{Sno, Pname} \rightarrow \text{Price} \)
- Following same decomposition tree as BCNF example:
 - \(R_1 = \{ \text{Sno, Sname, City} \} \)
 - \(R_2 = \{ \text{Sno, Pno, Price} \} \)
 - \(R_3 = \{ \text{Pno, Pname} \} \)
- Minimal cover:
 - \(\text{Sno} \rightarrow \text{Sname} \)
 - \(\text{Pno} \rightarrow \text{Pname} \)
 - \(\text{Sno} \rightarrow \text{City} \)
 - \(\text{Sno, Pname} \rightarrow \text{Price} \)
- Add relation to preserve missing dependency
 - \(R_4 = \{ \text{Sno, Pname, Price} \} \)
- Add relation for candidate key
 - \(R_5 = \{ \text{Sno, Pno} \} \)
- Optimization: combine relations \(R_1 \) and \(R_2 \) (same key)

3NF Synthesis

A lossless-join 3NF decomposition that is dependency preserving can be efficiently computed:

```plaintext
function Synthesize3NF(R, \Sigma) begin
    Result := \emptyset;
    \Delta := a minimal cover for \Sigma;
    for each \((X \rightarrow Y) \in \Delta\) do
        Result := Result \cup \{(XY)\};
        if there is no \( R_i \in Result \) such that \( R_i \) contains a candidate key for \( R \) then begin
            compute a candidate key \( K \) for \( R \); 
            Result := Result \cup \{K\};
        end;
    return Result;
end
```

3NF Synthesis - An Example

- \(R = \{ \text{Sno, Sname, City, Pno, Pname, Price} \} \)
- Functional dependencies:

 - \(\text{Sno} \rightarrow \text{Sname, City} \)
 - \(\text{Pno} \rightarrow \text{Pname} \)
 - \(\text{Sno, Pno} \rightarrow \text{Price} \)
 - \(\text{Sno, Pname} \rightarrow \text{Price} \)
- Minimal cover:
 - \(\text{Sno} \rightarrow \text{Sname} \)
 - \(\text{Pno} \rightarrow \text{Pname} \)
 - \(\text{Sno} \rightarrow \text{City} \)
 - \(\text{Sno, Pname} \rightarrow \text{Price} \)
 - \(\text{Pno} \rightarrow \text{Pname} \)
 - \(\text{Sno, Pname} \rightarrow \text{Price} \)
- Add relation for candidate key \(R_5 = \{ \text{Sno, Pno} \} \)
- Optimization: combine relations \(R_1 \) and \(R_2 \) (same key)
Summary

- Functional dependencies provide clues towards elimination of (some) redundancies in a relational schema.
- Goals: to decompose relational schemas in such a way that the decomposition is
 1. lossless-join
 2. dependency preserving
 3. BCNF (and if we fail here, at least 3NF)