What are the three main architectures for parallel DBMSs and what are their respective characteristics?

- **Shared memory:**
 - Communication overhead is low (memory can be used)
 - Larger number of processors: memory contention becomes bottleneck
 - Interference

- **Shared disk:**
 - Large amounts of data may need to be shipped over the interconnect
 - Interference

- **Shared nothing:**
 - More complex to implement
 - Near-linear scaleup, near-linear speedup

What is pipeline parallelism and what is data-partitioned parallelism?

For which operations are those approaches most useful, respectively?

- Pipelined parallelism most useful for non-blocking operators
- Data-partitioned parallelism most useful for operators that do not need to combine data across partitions (e.g., scan, selection, projection)

What are the respective advantages and disadvantages of each of the three basic data partitioning schemes, **round-robin**, **hashing**, and **range partitioning**?

- Round-robin suitable for queries that access entire relation
- Range partitioning superior for queries with range selections
- Hashing keeps data evenly distributed
- Problem for hashing and for range partitioning: data skew

How can we achieve data-partitioned parallelism with conventional physical operators?

- New physical operators: split and merge

How does the parallel hash join algorithm work?