
Considering Vocabulary Mappings in Query

Plans for Federations of RDF Data Sources

Sijin Cheng1 , Sebastián Ferrada1 , and Olaf Hartig1

Dept. of Computer and Information Science (IDA), Linköping University
{sijin.cheng, sebastian.ferrada, olaf.hartig}@liu.se

Abstract Federations of RDF data sources o�er great potential for
queries that cannot be answered by a single data source. However, query-
ing such federations poses several challenges, one of which is that di�erent
but semantically-overlapping vocabularies may be used for the respective
RDF data. Since the federation members usually retain their autonomy,
this heterogeneity cannot simply be homogenized by modifying the data
in the data sources. Therefore, handling this heterogeneity becomes a
critical aspect of query planning and execution. We introduce an ap-
proach to address this challenge by leveraging vocabulary mappings for
the processing of queries over federations with heterogeneous vocabular-
ies. This approach not only translates SPARQL queries but also preserves
the correctness of results during query execution. We demonstrate the
e�ectiveness of the approach and measure how the application of vocab-
ulary mappings a�ects on the performance of federated query processing.

1 Introduction

RDF federations play a crucial role in facilitating integrated access to distributed
data, allowing users to query and retrieve information seamlessly from multiple
sources. By leveraging federations, users can harness the collective knowledge
stored in the various independent federation members, enabling applications
such as semantic search, data integration, and knowledge discovery. Despite the
use of International Resource Identi�ers (IRIs) in RDF to universally identify
individuals, concepts, and predicates (e.g., ex:Bob, schema:Person, foaf:knows),1 the
independent datasets may employ their own local vocabulary, using di�erent
IRIs to refer to the same things (e.g., foaf:Person, schema:knows). Hence, queries ex-
pressed in a global vocabulary, which encompasses terms from multiple sources,
will fail to retrieve meaningful results when executed against federation mem-
bers with di�ering local vocabularies. For instance, a query requesting entities
of type schema:Person cannot retrieve entities of the equivalent type foaf:Person.

Vocabulary heterogeneity is further a problem when considering more com-
plex queries that need to compute joins among the data in the federation mem-
bers, when each federation member has its own unique vocabulary, or when the
relationship among the IRIs used in the di�erent datasets is more intricate than
a one-to-one equivalence (e.g., subclasses, unions).

Despite the availability of many well-understood and well-performing ontol-
ogy alignment approaches and corresponding tools, there is very little research on

1 When writing concrete IRIs using the usual shorthand notation with pre�x names
such as ex:, we use the pre�x names declared at http://prefix.cc/popular/all.sparql .

https://orcid.org/0000-0003-4363-0654
https://orcid.org/0000-0002-9834-8376
https://orcid.org/0000-0002-1741-2090
http://prefix.cc/popular/all.sparql

2 S. Cheng et al.

using the resulting mappings for integrated querying of multiple RDF datasets.
The few related works [11,13,12] describe rather ad hoc methods for query trans-
lation, either not providing a thorough formal treatment, not showing clear query
planning methods, or not introducing result reconciliation. In contrast, our work
in this paper is the �rst to provide a systematic and formal approach to consider
mappings among the vocabularies when processing queries over federations.

First, we de�ne what the expected result of a query in a vocabulary-aware
setting is; then, we introduce a new query plan operator to translate solutions
from a local to the global vocabulary; and �nally, we introduce an algorithm
that produces correct, vocabulary-aware query plans. We evaluate our approach
in federations with di�erent vocabulary mapping scenarios. Our experiments
show that there is no overhead in planning time when considering vocabulary
mappings; however, it takes slightly longer to execute the queries than in a
baseline scenario with materialized mapped data.

2 Related Work

The problem of achieving semantic interoperability across RDF data sources is
a topic of research since many years. Various approaches have been proposed
to address this challenge from di�erent angles, including a focus on methods
for representing vocabulary mappings [4,15], discovery of correspondences and
mappings between di�erent RDF graphs [10,7] and between their ontologies [8].

Our work relies on such ontology/vocabulary mappings to enable users to
issue queries using a uni�ed vocabulary over federations of RDF data sources
with heterogeneous vocabularies, thereby facilitating seamless retrieval of results
from multiple sources. While most work on SPARQL query federation engines
has introduced various approaches to process queries over multiple RDF data
sources (e.g., [2,5,16,17,18]), these engines are only capable of processing queries
that directly use the vocabularies as used by the data sources, assuming that
the user knows for each federation member what classes and properties it uses.

A few exceptions exist: Wang et al. introduce an approach to consider in-
stance mappings when executing SPARQL queries over federations of SPARQL
endpoints [19]. Joshi et al. describe a system called ALOQUS that considers
both instance and vocabulary mappings when executing SPARQL queries over
federations of SPARQL endpoints [11]. However, in contrast to our work in this
paper, there is no clear de�nition of what exactly the query result is that the
authors would consider correct and complete. Moreover, Joshi et al. do not pro-
vide any information about the types of vocabulary mappings considered and
how exactly the mappings are used to rewrite (sub)queries.

Makris et al. also explore the use of vocabulary mappings and instance
mappings in SPARQL query rewriting for accessing federations of RDF data
sources [13,12], Their approach supports a wide range of mapping types, cover-
ing classes, object properties, datatype properties, and individuals. Compared
to our method, however, their approach is concerned only with de�ning how to
rewrite a given SPARQL query into a set of SPARQL queries which may then
be used to access the federation members, without considering the treatment
of vocabulary mappings during result reconciliation, without formally de�ning
the expected query results, and also without providing any evaluation to assess

Vocabulary Mappings in Query Plans for Federations of RDF Data Sources 3

the e�ectiveness and performance of the approach. In contrast, our approach is
explicitly embedded into the query planning and query execution processes.

3 Preliminaries

As is usual for papers about RDF and SPARQL [14], we assume four pairwise
disjoint, countably in�nite sets: I (all IRIs), B (all blank nodes), L (all literals),
and V (all query variables). An RDF triple is a tuple (s, p, o) ∈ (I ∪ B) × I ×
(I ∪ B ∪ L). A set of such triples is called an RDF graph. As for SPARQL,
the major component of every SPARQL query is its graph pattern [14], where
the most basic type of such a graph pattern is a triple pattern, which is a tuple
(s, p, o) ∈ (V∪I)×(V∪I)×(V∪I∪L). Other forms of graph patterns considered in
this paper can be constructed recursively by combining two such patterns, P1 and
P2, using the operator AND or UNION [14]; i.e., (P1 ANDP2) and (P1 UNIONP2).

To formally abstract the concept of a federation, we use the following de�-
nition, which slightly adapts the notion of a federation as de�ned in our earlier
work [6]. The main di�erence of this adaptation is that, for the sake of simplifying
the discussion in this paper, we focus only on federations of SPARQL endpoints.

De�nition 1. A federation member fm is a SPARQL endpoint. A federa-

tion fed is a tuple (M, g) where M is a �nite and nonempty set of federation
members and g is a function that maps every federation member fm ∈ M to an
RDF graph (which is considered to be the graph that fm provides access to),
such that the graph of every member fm ∈ fed uses a disjoint set of blank nodes;
i.e., bnodes

(
g(fm)

)
∩ bnodes

(
g(fm′)

)
= ∅ for every other member fm′∈ M .

4 Vocabulary-Aware Formalization of Queries

This section de�nes an evaluation semantics for using SPARQL graph patterns
as queries over federations in which the data of the federation members is cap-
tured based on RDF vocabularies that may be di�erent from the vocabulary used
in the queries. This semantics considers mappings between the global query vo-
cabulary and the vocabularies used locally at the federation members. We begin
by introducing formal abstractions of vocabularies and vocabulary mappings.

4.1 Vocabularies and Vocabulary Mappings

For the purposes of the work in this paper, the relevant aspect of the notion
of an RDF vocabulary is that it introduces two disjoint sets of IRIs; namely,
IRIs that denote properties and that can be used in the predicate position of
triples, as well as IRIs of classes, as can be used in the object position of triples
that have rdf:type as predicate. Hence, we abstract the notion of a vocabulary
formally as a pair of such sets of IRIs. That is, a vocabulary v is a pair (C,R),
where C ⊂ I is a �nite set of IRIs of classes and R ⊂ I is a �nite set of IRIs of
properties, and we assume that C and R are disjoint; i.e., C ∩ R = ∅.

Given this notion of a vocabulary, we can now de�ne formally what it means
for an RDF graph or a graph pattern to be expressed in terms of a vocabulary.

De�nition 2. Let v = (C,R) be a vocabulary. An RDF graph G is expressed

in terms of v if, for every triple t = (s, p, o) in G, it holds that i) p ∈ R and

4 S. Cheng et al.

ii) if p is the IRI rdf:type, then o ∈ C. Similarly, a SPARQL graph pattern P is

expressed in terms of v if, for every triple pattern tp = (s, p, o) in P , it holds
that i) p ∈ R or p ∈ V and ii) if p is the IRI rdf:type, then o ∈ C or o ∈ V.

Mappings between vocabularies are then de�ned as follows.

De�nition 3. Let v = (C,R) and v′= (C′,R′) be vocabularies. A vocabulary

mapping VM from v to v′ is a �nite set of mapping rules where each such
mapping rule r is an expression of one of the following �ve forms.

RuleType1: c ≡ c′ is a mapping rule if c ∈ C and c′∈ C′.

RuleType2: c ⊑ c′ is a mapping rule if c ∈ C and c′∈ C′.

RuleType3: c1 ⊔ . . . ⊔ cn ≡ c′ is a mapping rule if {c1, . . . , cn} ⊆ C and c′∈ C′.

RuleType4: p ≡ p′ is a mapping rule if p ∈ R and p′∈ R′.

RuleType5: p ⊑ p′ is a mapping rule if p ∈ R and p′∈ R′.

Notice that, by design, the IRIs of the source vocabulary are on the left-hand
sides of the mapping rules, whereas the IRIs of the target vocabulary are on the
ride-hand sides. Notice also that the syntax of these rules resembles the syntax
of terminological axioms of Description Logics, and so does their semantics. To
de�ne this semantics we introduce the following function which speci�es the
result of applying such rules to individual RDF triples.

De�nition 4. Let v = (C,R) and v′ = (C′,R′) be vocabularies, let VM be a
vocabulary mapping from v to v′, and let r ∈ VM be a mapping rule in VM .
The application of r to an RDF triple t = (s, p, o), denoted by apply(r, t), is an
RDF triple that is de�ned as follows, depending on the form of r.

1. If r is either of the form c ≡ c′ or of the form c ⊑ c′, with c ∈ C and c′∈ C′,
and p is the IRI rdf:type and o = c, then apply(r, t) = (s, rdf:type, c′).

2. If r is of the form c1 ⊔ . . . ⊔ cn ≡ c′, with {c1, . . . , cn} ⊆ C and c′∈ C′, and p
is the IRI rdf:type and o ∈ {c1, . . . , cn}, then apply(r, t) = (s, rdf:type, c′).

3. If r is either of the form p′ ≡ p′′ or of the form p′ ⊑ p′′, with p′ ∈ R and
p′′∈ R′, and p = p′, then apply(r, t) = (s, p′′, o).

4. In all other cases, apply(r, t) = t.

Example 1. If r is the mapping rule foaf:Person ≡ schema:Person and t is the triple
(ex:Bob, rdf:type, foaf:Person), then apply

(
r, t

)
= (ex:Bob, rdf:type, schema:Person).

For the purpose of de�ning the aforementioned evaluation semantics, we
broaden the application of mapping rules both from individual triples to whole
RDF graphs and from individual mapping rules to whole vocabulary mappings:

De�nition 5. Let v and v′ be vocabularies, and let VM be a vocabulary map-
ping from v to v′. The application of VM to an RDF graph G, denoted by
apply(VM , G), is the RDF graph returned by Algorithm 1 for VM and G.

Example 2. Consider the vocabulary mapping VM ={foaf:knows ≡ schema:knows,
foaf:Person ≡ schema:Person}. Then, apply(VM , G) = G′ for G and G′ as follows.

G =
{
(ex:Bob, rdf:type, foaf:Person), G′=

{
(ex:Bob, rdf:type, schema:Person),

(ex:Bob, foaf:name, "Bob"), (ex:Bob, foaf:name, "Bob"),

(ex:Bob, foaf:knows, ex:Eve)
}

(ex:Bob, schema:knows, ex:Eve)
}

Vocabulary Mappings in Query Plans for Federations of RDF Data Sources 5

Algorithm 1: Applies a vocabulary mapping VM to an RDF graph G.

1 G′ ← {t ∈ G | apply(r, t) = t for all r ∈ VM };
2 while there exists r∈VM and t∈G with apply(r, t) ̸= t and apply(r, t) /∈G′ do

3 add apply(r, t) to G′;
4 end

5 return G′

Note 1. By De�nition 5, every triple of G that is translated to a di�erent triple
is not present anymore in the resulting RDF graph. In contrast, triples for which
none of the mapping rules in VM has an e�ect are kept as they are (cf. line 1 of
Algorithm 1). For instance, (ex:Bob, foaf:name, "Bob") in Example 2 is such a triple.

Note 2. In some cases, applying a vocabulary mapping to an RDF graph has
no e�ect at all. For instance, for the empty vocabulary mapping VM ∅, it holds
that apply(VM ∅, G) = G for every RDF graph G. Similarly, given a (non-empty)
vocabulary mapping VM from a vocabulary v = (C,R) to v′ = (C′,R′), if an
RDF graph G does not use vocabulary v (i.e., none of the triples in G has any
of the IRIs of R as its predicate and none of the triples with predicate rdf:type

has any of the IRIs of C as its object), then it holds that apply(VM , G) = G.

Given our de�nitions of vocabularies and vocabulary mappings, we can now
introduce a vocabulary-aware view of a federation. To this end, we augment the
notion of a federation (cf. De�nition 1) with a so-called vocabulary context that
establishes a global vocabulary in terms of which the federation can be queried.

De�nition 6. A vocabulary context cxt for a federation fed = (M, g) is a
pair (vG, vm) where vG is a vocabulary (considered as the global vocabulary) and
vm is a function that maps every federation member fm ∈ M to a vocabulary
mapping from some vocabulary vfm (considered to be used by fm) to vG.

We emphasize that di�erent vocabulary contexts may be used for a feder-
ation, which makes it possible to query a federation from the perspective of
di�erent global vocabularies (as long as the relevant vocabulary mappings are
available in a corresponding vocabulary context). Moreover, notice that the no-
tion of a vocabulary context also captures cases in which some federation mem-
bers directly use the global vocabulary. In such cases, the function vm of the
corresponding vocabulary context simply assigns the empty vocabulary map-
ping to these federation members. Also, if multiple federation members share a
common vocabulary that is not the global one, they can be assigned the same
vocabulary mapping for that shared vocabulary.

In the remainder of this paper we assume that the federation members con-
tain only instance data rather than statements about their vocabulary terms.
Formally, we capture this assumption as follows: Given a federation fed = (M, g)
and a vocabulary context cxt = (vG, vm) for fed , we assume that, for every triple
t = (s, p, o) in the RDF graph g(fm) of every federation member fm ∈ M , it
holds that i) s /∈ (Cfm ∪ Rfm), ii) if p is not the IRI rdf:type, then o /∈ Cfm, and
iii) o /∈ Rfm, where vfm = (Cfm,Rfm) is the vocabulary used by fm (i.e., the
vocabulary that the vocabulary mapping vm(fm) maps to).

6 S. Cheng et al.

4.2 Vocabulary-Aware Evaluation Semantics

At this point, we have all the necessary elements to de�ne the vocabulary-aware
evaluation semantics of SPARQL patterns over federations. Informally, the idea
is to de�ne the result of a SPARQL pattern to be the same as the result of
evaluating the pattern over the (virtual) union of the RDF graphs of the feder-
ation members in a global-vocabulary view of the queried federation. Formally,
we de�ne this view and the resulting evaluation semantics as follows.

De�nition 7. Let fed = (M, g) be a federation and cxt = (vG, vm) be a vo-
cabulary context for fed . The cxt-based global-vocabulary view of fed is
the federation fed ′= (M ′, g′) such that M ′= M and, for every federation mem-
ber fm ∈ M , it holds that g′(fm′) = apply

(
vm(fm), g(fm)

)
.

De�nition 8. Let fed be a federation, cxt = (vG, vm) be a vocabulary context
for fed , and fed ′= (M ′, g′) be the cxt-based global-vocabulary view of fed . The
cxt-based evaluation of a SPARQL graph pattern P over fed , denoted by
[[P]]cxtfed , is a set of solution mappings de�ned as [[P]]cxtfed := [[P]]Gunion where Gunion

is the RDF graph Gunion =
⋃
fm∈M ′ g′(fm), and [[P]]Gunion is the evaluation of P

over Gunion as de�ned by Pérez et al. [14].

Example 3. Consider a federation fed = (M, g) with a single federation mem-
ber fm such that g(fm) is the RDF graph G given in Example 2, and let tp be
the triple pattern (?s, schema:knows, ?o). Notice that the IRI in this triple pattern
does not occur in the graph of fm. Hence, using this triple pattern directly as
a query over the federation would result in no solutions mappings. In contrast,
consider cxt = (vG, vm) as a vocabulary context for fed such that vm(fm) is the
vocabulary mapping VM of Example 2. Then, the RDF graph of fm in the cxt-
based global-vocabulary view of fed is RDF graph G′ in Example 2 and, thus,
the query result is [[tp]]cxtfed = {µ} with µ = {?s → ex:Bob, ?o → ex:Eve}.

Example 4. Still considering the federation and the vocabulary context of Ex-
ample 3, assume now that the triple pattern tp′= (?x, rdf:type, ?t) is given as a
query over the federation. The query result in this case is [[tp′]]cxtfed = {µ′} with
µ′= {?x → ex:Bob, ?t → schema:Person}.

5 Vocabulary-Aware Query Plans

While the query evaluation semantics in the previous section de�nes the expected
query results to be produced by a vocabulary-aware federation engine, we now
establish a formal foundation to consider vocabulary mappings when creating
query execution plans in such an engine. To this end, we build on FedQPL,
which is a formal language to represent logical plans for queries over hetero-
geneous federations [6]. The basic idea of our approach is as follows: Given a
FedQPL expression that represents a logical plan for a query expressed in terms
of the global vocabulary, rewrite this expression into a FedQPL expression that
represents a vocabulary-aware plan. In such a plan, requests to federation mem-
bers are expressed in terms of the vocabularies used locally at these federation
members, and the results retrieved via such requests are translated back to the
global vocabulary. The latter is necessary to correctly join intermediate results
from federation members with di�erent local vocabularies and also to eventually

Vocabulary Mappings in Query Plans for Federations of RDF Data Sources 7

present the overall query result in terms of the global vocabulary. To capture
such a translation of intermediate results explicitly in logical plans represented
by FedQPL we extend FedQPL with a new operator called l2g.

5.1 Vocabulary-Aware Extension of FedQPL

The following de�nition speci�es our extended syntax of FedQPL.

De�nition 9. Let fed = (M, g) be a federation and cxt = (vG, vm) be a vocab-
ulary context for fed . A FedQPL expression for fed and cxt is an expression φ
constructed from the following grammar, in which req, gpAdd, join, union, mj, mu,
l2g, (, and) are terminal symbols, fm is a federation member in M , P is a graph
pattern, VM is a vocabulary mapping in the image of vm, and Φ is a nonempty
set of FedQPL expressions (constructed recursively from the same grammar).

φ ::= reqP
fm | gpAddP

fm(φ) | join(φ,φ) | union(φ,φ) |
mjΦ | muΦ | l2gVM(φ)

Before focusing on the new operator (l2g), we brie�y describe the other op-
erators of FedQPL: req captures the intention to request the result for a graph
pattern from a federation member. gpAdd captures the intention to interact with
a federation member to obtain solution mappings for a graph pattern that are
compatible with the result produced by the given subplan and, then, join these
solution mappings into this result. join and union capture the intention to join,
respectively union, the results of two subplans within the federation engine (i.e.,
without interacting with any federation member); mj and mu are multiway vari-
ants of join and union, respectively. For more details, several examples, and the
formal semantics of these operators, refer to our earlier work on FedQPL [6].

The new operator is then meant to capture the application of a given vo-
cabulary mapping VM to every solution mapping produced by the subplan. To
de�ne the semantics of this operator formally, we �rst introduce the correspond-
ing notion of applying vocabulary mappings to solution mappings.

De�nition 10. The application of a vocabulary mapping VM to a solution
mapping µ, denoted by apply(VM, µ), is a set of solution mappings obtained by
performing Algorithm 2 with VM and µ, where apply

(
VM, u

)
in line 5 is:

apply
(
VM, u

)
= {x′ | u ≡ x′ is a mapping rule in VM } ∪

{x′ | u ⊑ x′ is a mapping rule in VM } ∪
{c′ | c1 ⊔ . . . ⊔ cn ≡ c′ with u ∈ {c1, . . . , cn} is in VM }.

Example 5. Consider the vocabulary mapping VM ={foaf:knows ≡ schema:knows,
foaf:knows ≡ ex:acquaintedWith, ex:Student ⊑ schema:Person}. For the solution mapping
µ = {?x → ex:Student, ?y → foaf:knows}, we have apply(VM, µ) = {µ1, µ2} with

µ1 = {?x → schema:Person, ?y → schema:knows} and

µ2 = {?x → schema:Person, ?y → ex:acquaintedWith}.

We are now ready to extend the de�nition of the semantics of FedQPL to
cover expressions that contain the new operator. Since the original de�nition is

8 S. Cheng et al.

Algorithm 2: Applies vocabulary mapping VM to solution mapping µ.

1 Ω ← {µ∅}, where µ∅ is the empty solution mapping, i.e., dom(µ∅) = ∅;
2 forall ?v ∈ dom(µ) do
3 X ← ∅; // initially empty set of RDF terms, to collect new bindings for ?v
4 if µ(?v) is an IRI u ∈ I then
5 X ← apply

(
VM, u

)
, where apply

(
VM, u

)
as in De�nition 10;

6 if X is empty then

7 X ← {µ(?v)};
8 Ω ←

{
µ′ ∪ {?v → x} | µ′∈ Ω and x ∈ X

}
;

9 return Ω

based on a recursively-de�ned evaluation function [6, De�nition 6], our extension
in this paper consists of adding a new case to this recursive de�nition.

De�nition 11. Let fed be a federation, cxt be a vocabulary context for fed ,
and φ be a FedQPL expression for fed and cxt . The result produced by φ,
denoted by sols(φ), is a set of solution mappings that is de�ned as follows.

1. If φ is of the form l2gVM(φ′), then sols(φ) :=
⋃

µ∈sols(φ′) apply(VM, µ).

2. If φ is of any other form, then sols(φ) is de�ned as in [6, De�nition 6].

Example 6. Consider federation fed of Examples 3�4, which consists of a single
federation member fm with the following RDF graph G (as given in Example 2):

G=
{
(ex:Bob, rdf:type, foaf:Person), (ex:Bob, foaf:name, "Bob"), (ex:Bob, foaf:knows, ex:Eve)

}
.

Moreover, consider the FedQPL expression φ = l2gVM
(
reqtp′

fm

)
where the vocab-

ulary mapping VM = {foaf:knows ≡ schema:knows, foaf:Person ≡ schema:Person} is the
same as in Example 2 and the triple pattern tp′ is (?x, rdf:type, ?t). Notice that
the req operator in φ issues this triple pattern to be executed locally at the fed-

eration member fm and, thus, produces the following result: sols
(
reqtp′

fm

)
= {µ}

with µ = {?x → ex:Bob, ?t → foaf:Person}. The l2g operator then lifts this result to
the global vocabulary: sols(φ) = {µ′} with µ′= {?x → ex:Bob, ?t → schema:Person}.

While the semantics of FedQPL de�nes the result that a plan represented
by a FedQPL expression produces, it also needs to be shown that this result is
indeed the expected result for the query for which the plan has been created. If
that is the case, we say that the expression is correct. Formally, we de�ne this
correctness property for our extended version of FedQPL expressions as follows.

De�nition 12. Let P be a SPARQL graph pattern, fed be a federation, and
cxt be a vocabulary context for fed . A FedQPL expression φ for fed and cxt is
correct for P if it holds that sols(φ) = [[P]]cxtfed .

Example 7. By comparing Examples 4 and 6, we observe that sols(φ) = [[tp′]]cxtfed .
That is, the result produced by the FedQPL expression φ in Example 6 is the
same as the result expected for triple pattern tp′ = (?x, rdf:type, ?t) over feder-
ation fed =

(
{fm}, g

)
in vocabulary context cxt , where fed and cxt = (vG, vm)

with vm(fm) = VM as in Example 6. Therefore, φ is correct for tp′over fed in cxt .

Vocabulary Mappings in Query Plans for Federations of RDF Data Sources 9

Algorithm 3: Given a source assignment φ and a vocabulary context
cxt = (vG, vm), both for the same federation fed , this algorithm rewrites
φ into a vocabulary-aware FedQPL expression for fed and cxt .

1 if φ is of the form reqP
fm then

2 VM ← vm(fm);
3 P ′← apply(VM, P), where apply(VM, P) as in De�nition 13;
4 if P ′ ̸= P then P ′← (P UNIONP ′);

5 return l2gVM
(
reqP ′

fm

)
;

// If φ is not of the form reqP
fm, then it is either of the form mjΦ

// or of the form muΦ (because it is a source assignment).
6 Φ′← ∅; // initially empty set of FedQPL expressions
7 forall φi ∈ Φ do

8 φ′
i← result of Algorithm 3 for φi and cxt ;

9 Φ′← Φ′∪ {φ′
i};

10 if φ is of the form mjΦ then return mjΦ′; else return muΦ′;

Example 8. Consider the triple pattern tp = (?s, schema:knows, ?o). For the same
federation fed and vocabulary context cxt = (vG, vm) as in the previous examples
(Examples 6 and 7), Example 3 shows that the expected result of tp is [[tp]]cxtfed =
{µ} with µ = {?s → ex:Bob, ?o → ex:Eve}. It is not di�cult to see that the FedQPL
expression φ′ = l2gVM

(
reqtp′′

fm

)
with tp′′ = (?s, foaf:knows, ?o) produces the exact

same result and, thus, is correct for tp over fed in cxt .

Observe that the triple pattern tp′′ in the FedQPL expression φ′ of Example 8
is a version of the given triple pattern tp translated to the local vocabulary of the
queried federation member. In contrast, for the FedQPL expression in Example 7
such a translation of the given triple pattern (tp′, in this case) was not necessary.
In the following, we introduce an algorithm to create correct vocabulary-aware
plans represented as FedQPL expressions.

5.2 Creation of Vocabulary-Aware Query Plans

Our algorithm for creating a vocabulary-aware logical plan is designed based on
the assumption that the query engine has already created an initial logical plan
for the given global query, which is expressed in terms of the global vocabulary.
In particular, we assume that this initial logical plan is the output of the source
selection & query decomposition step, which is the �rst major query processing
step in a query federation engine [1,18].2 As shown in our earlier work [6], the
output of existing source selection & query decomposition approaches can be
captured by a fragment of FedQPL that consists of only three operators: req, mj,
and mu. We call the FedQPL expressions in this fragment source assignments [6].

Consequently, the main input to our algorithm in this section�see Algo-
rithm 3�is such a source assignment in which the graph pattern of every req
operator is expressed in terms of the global vocabulary. Another input is a vo-
cabulary context for the federation considered by the given source assignment.

2 Taking into account vocabulary mappings also during source selection is an orthog-
onal problem that we consider out of scope of our work in this paper.

10 S. Cheng et al.

Algorithm 4: Applies vocab. map. VM to triple pattern tp = (s, pr, o).

1 NewPreds ← {p | r ∈ VM s.t. r is of the form p ≡ p′ or p ⊑ p′, with p′= pr};
2 if NewPreds is empty then NewPreds ← {pr};

3 NewObjs ← {c | r ∈ VM s.t. r is of the form c ≡ c′ or c ⊑ c′, with c′= o}∪
{c1, . . . , cn | r ∈ VM of the form c1 ⊔ · · · ⊔ cn ≡ c′, with c′= o};

4 if NewObjs is empty then NewObjs ← {o};

5 NewTPs ← ∅; // initially empty set of triple patterns
6 foreach pr′∈ NewPreds do
7 foreach o′∈ NewObjs do
8 NewTPs ← NewTPs ∪ {tp′} where tp′= (s, pr′, o′);

9 P ′← combine all triple patterns in NewTPs into a UNION graph pattern;
10 return P ′;

Then, the algorithm rewrites the given source assignment recursively while
keeping the overall structure of mj and mu operators exactly as given within the
source assignment (lines 6�10 in Algorithm 3). Hence, the only thing that the
algorithm actually changes are the req operators. Each such operator is replaced
by a subplan consisting of a new req operator with an l2g operator on top (lines 1�
5). The vocabulary mapping of this l2g operator is the one associated with the
federation member of the replaced req operator (line 2), and the graph pattern
of the new req operator is obtained by translating the graph pattern of the
replaced req operator (line 3) and, then, combining the translated pattern with
the original one (line 4). While we shall discuss the reason for the latter step
later (cf. Note 3), the translation of graph patterns (line 3) is de�ned as follows.

De�nition 13. The application of a vocabulary mapping VM to a graph pat-
tern P , denoted by apply(VM, P), is a graph pattern determined as follows.

1. If P is a triple pattern, then apply(VM, P) is the graph pattern that is ob-
tained by performing Algorithm 4 with VM and P as input.

2. If P is a basic graph pattern B={tp1, ..., tpn}, then apply(VM, P) is the graph
pattern (tp′1 AND . . . AND tp′n) where tp′i = apply(VM, tpi) for 1 ≤ i ≤ n.

3. If P is of the form (P1 AND . . . ANDPn), then apply(VM, P) is the graph
pattern (P ′

1 AND . . . ANDP ′
n) where P ′

i = apply(VM, Pi) for 1 ≤ i ≤ n.

4. If P is of the form (P1 UNION . . . UNIONPn), then apply(VM, P) is the graph
pattern (P ′

1 UNION . . . UNIONP ′
n) where P ′

i = apply(VM, Pi) for 1 ≤ i ≤ n.

Example 9. Consider the triple pattern tp = (?s, schema:knows, ?o) and the vo-
cabulary mapping VM = {foaf:knows ≡ schema:knows, foaf:Person ≡ schema:Person}, as
in Example 8. Then, by De�nition 13, it holds that apply(VM, tp) is the triple
pattern (?s, foaf:knows, ?o) which, unsurprisingly, is the same as tp′′ in Example 8.
In contrast, for tp′= (?x, rdf:type, ?t) in Example 7, apply(VM, tp′) = tp′.

Example 10. For the vocabulary mapping VM ′ = {ex:Student ⊑ schema:Person,
ex:Professor ⊑ schema:Person} and the triple pattern tp = (?x, rdf:type, schema:Person),
we have apply(VM, tp) =

(
(?x, rdf:type, ex:Student)UNION (?x, rdf:type, ex:Professor)

)
.

Vocabulary Mappings in Query Plans for Federations of RDF Data Sources 11

While Examples 9�10 focus on translating graph patterns, the following ex-
ample illustrates our main translation algorithm for a whole source assignment.

Example 11. We continue with the previous example (Example 10) in which
the triple pattern tp is assumed to be expressed in terms of a global vocab-
ulary. Now, consider a federation fed with a federation member fm that uses
the corresponding local vocabulary; i.e., a possible vocabulary context for fed
associates fm with the vocabulary mapping VM ′ of Example 10. Assume fur-
thermore that fm has been identi�ed to be the only member of fed that may
have data to produce a nonempty result for tp. Hence, we have the single-
operator expression reqtp

fm as the source assignment for executing tp over the
federation. Algorithm 3 can then be used to rewrite this source assignment into
a vocabulary-aware plan, which creates the FedQPL expression l2gVM ′(

reqP ′′

fm

)
where P ′′ is the graph pattern

(
(?x, rdf:type, schema:Person)UNIONP ′) that contains

P ′=
(
(?x, rdf:type, ex:Student)UNION (?x, rdf:type, ex:Professor)

)
from Example 10.

Note 3. Notice that the UNION pattern P ′′ in Example 11 contains the given
triple pattern tp in addition to the pattern P ′ that resulted from translating tp
based on the vocabulary mapping VM ′. Combining the translated pattern with
the original pattern in this way is the e�ect of line 4 in Algorithm 3. Adding
the original pattern is necessary to guarantee complete query results in cases in
which a federation member uses a term of the global vocabulary even if, according
to the vocabulary mapping for this federation member, there is a corresponding
term in the local vocabulary of the federation member. As a simple example that
illustrates such a case, assume that the RDF graph of federation member fm of
Example 11 is G =

{
(ex:Bob, rdf:type, schema:Person)

}
. Recall that the vocabulary

mapping for fm is VM ′= {ex:Student ⊑ schema:Person, ex:Professor ⊑ schema:Person}.
Hence, fm uses the global IRI schema:Person even if, according to VM ′, there are
two corresponding IRIs in the local vocabulary of fm. Nonetheless, by De�ni-
tion 8, the expected result for the triple pattern tp = (?x, rdf:type, schema:Person)
of Example 11 consists of the solution mapping µ = {?x → ex:Bob} because
apply

(
VM ′, G

)
= G (cf. De�nition 5). However, a version of Algorithm 3 without

line 4 would create the FedQPL expression φ = l2gVM ′(
reqP ′

fm

)
with P ′as in Exam-

ple 11, and this plan would produce the empty result, sols(φ) = ∅, because there
are no matches for P ′ in the data of fm. In contrast, Algorithm 3 with line 4 cre-
ates l2gVM ′(

reqP ′′

fm

)
with P ′′ =

(
(?x, rdf:type, schema:Person)UNIONP ′), which pro-

duces the expected result consisting of solution mapping µ.

While having line 4 in Algorithm 3 �xes the illustrated incompleteness issue
in cases in which federation members unexpectedly use the global vocabulary, a
similar issue exists if the global query uses terms of any of the local vocabularies
even if there is a corresponding global term.

Example 12. Consider a federation fed =
(
{fm}, g

)
with g(fm) =

{
(s, pL, o)

}
,

and a vocabulary context cxt = (vG, vm) such that vm(fm) = {pL ≡ pG}. Then,
the expected result of evaluating the triple pattern tp = (?s, pL, ?o) over fed
is the empty result (i.e., [[tp]]cxtfed = ∅) because there is no matching triple for

12 S. Cheng et al.

tp in apply
(
vm(fm), g(fm)

)
=

{
(s, pG, o)

}
. However, given the source assignment

reqtp
fm, Algorithm 3 (with or without line 4) translates this source assignment into

the FedQPL expression l2gvm(fm)
(
reqtp

fm

)
, which incorrectly produces a nonempty

result consisting of solution mapping µ = {?s → s, ?o → o}.
To �x the issue illustrated in the previous example, the only graph patterns

that we support as global queries are the ones that do not contain any of the
vocabulary terms used in the left-hand side of some mapping rule in the given
vocabulary context. We call such patterns purely global, de�ned as follows.

De�nition 14. Let cxt = (vG, vm) be a vocabulary context. A SPARQL graph
pattern P is purely global in cxt if the following properties hold.

1. If P is a triple pattern (s, p, o), then p /∈ A and o /∈ A, where

A = {x | x ≡ x′ is a rule in some vocab. mapping in the image of vm}∪
{c1, . . . , cn | c1 ⊔ · · · ⊔ cn ≡ c′ is in some mapping in the image of vm}.

2. If P is a BGP, then every triple pattern tp ∈ P is purely global in cxt .

3. If P is of the form either (P1 AND . . . ANDPn) or (P1 UNION . . . UNIONPn),
then every Pi is purely global in cxt , for 1 ≤ i ≤ n.

Example 13. Considering cxt and tp of Example 12, tp is not purely global
in cxt , and neither is any graph pattern that contains tp as a sub-pattern. In
contrast, the triple pattern (?s, pG, ?o) is purely global in cxt .

Finally, even if we focus only on purely-global graph patterns, the correctness
of the vocabulary-aware FedQPL expressions produced by Algorithm 3 depends
on the correctness of the source assignments from which they are produced. Since
every source assignment that is given to Algorithm 3 is assumed to be expressed
in terms of the global vocabulary, the notion of correctness of such source assign-
ments is not the same as the correctness of vocabulary-aware FedQPL expres-
sions as given in De�nition 12. Instead, such source assignments are considered as
FedQPL expressions for the global-vocabulary view of the queried federation (cf.
De�nition 7), which means that their req operators are considered to access the
global-vocabulary view of the RDF graphs of the federation members, and the
correctness of such source assignments is then de�ned as follows.

De�nition 15. Let fed be a federation, cxt = (vG, vm) be a vocabulary con-
text for fed , and fed ′= (M ′, g′) be the cxt-based global-vocabulary view of fed .
Moreover, let P be a SPARQL graph pattern. A source assignment for fed ′ is

correct for P if it holds that sols(φ) = [[P]]Gunion , where Gunion =
⋃
fm∈M ′ g′(fm).

Finally, the correctness of Algorithm 3 can be stated as follows. Given a
federation fed , a vocabulary context cxt for fed , a SPARQL graph pattern P
that is purely global in cxt , and a source assignment φ for the cxt-based global-
vocabulary view of fed , if φ is correct for P (as per De�nition 15), then the
FedQPL expression obtained by performing Algorithm 3 with φ and cxt as input
is a FedQPL expression for fed and cxt that is correct for P (as per De�nition 12).
This correctness follows from De�nitions 8, 11, 12, 14, and 15, and the de�nition
of Algorithm 3 (including the corresponding De�nition 13 with its Algorithm 4).

Vocabulary Mappings in Query Plans for Federations of RDF Data Sources 13

6 Evaluation

In this section we evaluate how vocabulary-awareness, as supported by our ap-
proach, a�ects the performance of federated query processing. To this end, we
�rst describe the implementation employed for our study, along with the ex-
periment setup. Thereafter, we present the measurements and discuss our ob-
servations. All artifacts required to reproduce our experiments, as well as the
measurements obtained from these experiments, are available online.3

6.1 Implementation

We implemented the approach in our query federation engine HeFQUIN.4 While
the approach is independent of any particular plan-enumeration algorithm based
on which the engine may select a speci�c query plan to execute, for the evaluation
we use the approach in combination with a simple greedy plan-enumeration al-
gorithm. This algorithm takes a FedQPL expression as produced by Algorithm 3
as input and constructs a left-deep execution plan for the multiway join in this
expression. To this end, the algorithm starts by estimating the cardinality of the
result of each subplan under the join, which is done by sending ASK requests
to the corresponding federation members [17]. Thereafter, the algorithm picks a
�rst subplan based on the estimated cardinality and uses it as the starting point
for building up the left-deep plan. Subsequently, the algorithm iterates over the
remaining subplans that can be joined with the partial left-deep plan that has
been built so far, disregarding subplans that would introduce cross products
unless no other subplans are available. During each step of this iteration, the al-
gorithm considers the initially-determined cardinality for all available subplans
and employs a greedy strategy to pick the subplan with the lowest cardinality
among the available options. As the actual join algorithm in the resulting plans,
we simply use the symmetric hash join algorithm.

6.2 General Experiments Setup

All experiments described in this paper have been performed on a server machine
with two 8-core Intel Xeon E5-2667 v3@3.20GHz CPUs and 256 GB of RAM.
The machine runs a 64-bit Debian GNU/Linux 10 server operation system. Fed-
eration members used in the experiments are SPARQL endpoints set up using
docker images of Virtuoso v7.2.5.

Datasets: The datasets utilized in our evaluation are generated using the dataset
generator of the Lehigh University Benchmark (LUBM) [9], which is a popular
benchmark in the Semantic Web community for evaluating the performance of
storage and reasoning systems for RDF data. These benchmark datasets capture
a �ctional scenario of universities that consist of departments with both students

3 https://github.com/LiUSemWeb/HeFQUIN-VocabMappingsExperiments
4 https://github.com/LiUSemWeb/HeFQUIN

https://github.com/LiUSemWeb/HeFQUIN-VocabMappingsExperiments
https://github.com/LiUSemWeb/HeFQUIN

14 S. Cheng et al.

Table 1. The mapping rules that constitute the mapping from the vocabulary used in
the generated datasets (and also in federation Fed1) to the global vocabulary.

Type Mapping Rule

RuleType1 lubm:Course ≡ global:Course
RuleType1 lubm:GraduateStudent ≡ global:GraduateStudent
RuleType2 lubm:GraduateStudent ⊑ global:Student
RuleType2 lubm:Lecturer ⊑ global:Faculty
RuleType2 lubm:GraduateCourse ⊑ global:Course
RuleType2 lubm:UndergraduateStudent ⊑ global:Student
RuleType3 lubm:UndergraduateStudent ⊔ lubm:GraduateStudent ≡ global:Student
RuleType3 lubm:AssistantProfessor ⊔ lubm:AssociateProfessor ⊔ lubm:FullProfessor ≡ global:Professor
RuleType4 lubm:advisor ≡ global:supervisor
RuleType4 lubm:worksFor ≡ global:worksAt
RuleType4 lubm:teacherOf ≡ global:teaches
RuleType4 lubm:telephone ≡ global:phoneNumber
RuleType4 lubm:emailAddress ≡ global:email
RuleType4 lubm:researchInterest ≡ global:researchTopic
RuleType4 lubm:memberOf ≡ global:memberOf
RuleType4 lubm:subOrganizationOf ≡ global:isPartOf
RuleType5 lubm:publicationAuthor ⊑ global:writtenBy
RuleType5 lubm:doctoralDegreeFrom ⊑ global:degreeFrom
RuleType5 lubm:mastersDegreeFrom ⊑ global:degreeFrom
RuleType5 lubm:undergraduateDegreeFrom ⊑ global:degreeFrom
RuleType5 lubm:headOf ⊑ global:worksAt
RuleType5 lubm:takesCourse ⊑ global:registersCourse

and faculty of di�erent types (e.g., lecturers, assistant professors). These peo-
ple engage in activities such as teaching or taking courses, may be co-authors
of publications, and have degrees from universities. For our evaluation, we gen-
erated such data for ten universities and split into ten separate datasets (one
per university). One notable aspect of these datasets is that they are interlinked
through di�erent types of "degree from" relationships; i.e., students and faculty
of a university described in one dataset may have a degree from a university
described in another dataset. We leverage this feature in the test queries used
for our evaluation (see below). Another relevant aspect of these datasets is that
not all classes and properties of the LUBM schema are used explicitly in the gen-
erated datasets. For instance, while the LUBM schema contains classes such as
lubm:FullProfessor, lubm:AssociateProfessor and lubm:AssistantProfessor as subclasses
of lubm:Professor, the generated datasets contain only these subclasses. We lever-
age this aspect to establish a separation between local vocabularies and global
vocabulary being used in our evaluation.

Base Vocabulary Mapping: While we consider three di�erent federations for
our evaluation (see below), for all of them we aim to use the same global vocab-
ulary. As the basis of this global vocabulary we use the classes and properties
that are not used explicitly in the generated datasets, encompassing IRIs such
as global:degreeFrom and global:Professor. Additionally, we create a few supplemen-
tary IRIs (e.g., global:worksAt, global:registersCourse) to allow us to consider a wider
range of di�erent types of mapping rules. After establishing our global vocabu-
lary, we manually constructed a mapping from the local vocabulary consisting of

Vocabulary Mappings in Query Plans for Federations of RDF Data Sources 15

Table 2. Characteristics of the queries used in the evaluation. C, P, and I refer to the
types of terms, representing class IRIs, predicate IRIs, and instance IRIs, respectively.

query plan
translation

interm.result
translation

joins
are on

#triple
patterns

types of joins
#solution
mappings

Query ≡ ⊑ ⊔ ≡ ⊑ ⊔
Q1 P P C I 6 s-s, o-o 356
Q2 P P C I 5 s-s, o-o 382,803
Q3 P P C C,I 6 s-s, o-o 158
Q4 P C C P P 6 s-s, s-o, o-o, p-p 270
Q5 C,P C C I 5 s-s, s-o, o-o 229,170
Q6 P C C C C C I 5 s-s, s-o, o-o 274,699
Q7 C C C P C,P C C,I 5 s-s, s-o, o-o 233,560

the class and property that are used explicitly in the generated datasets to this
global vocabulary. Table 1 lists the mapping rules of this vocabulary mapping.

Next, we describe the three federations used for the evaluation. Each of them con-
sists of ten federation members, created based on the aforementioned datasets.

Fed0: As a baseline, we set up a federation in which all federation members em-
ploy the global vocabulary. Thus, no vocabulary translation is needed for query-
ing this federation. To create the datasets of the ten members of Fed0, we simply
use an implementation of Algorithm 1 to apply the vocabulary mapping of Ta-
ble 1 to each of the ten datasets produced by the LUBM dataset generator.

Fed1: For setting up this federation, we use the generated datasets as they
are. Therefore, the vocabulary used in these datasets�which is the same in all
ten of them�becomes the local vocabulary of the members in this federation.
Consequently, when querying Fed1, the vocabulary mapping of Table 1 can be
used commonly for all federation members.

Fed2: This federation is structurally the same as Fed1, but with the follow-
ing simple variation of the local vocabularies. For each federation member, we
change the IRIs of the vocabulary terms used in the dataset of that member by
appending a member-specific su�x (ranging from 0 to 9) to each such IRI. For in-
stance, the class IRI lubm:Course becomes lubm:Course0 for the �rst federation mem-
ber, lubm:Course1 for the second, etc. As a result, the local vocabularies used by
the ten members of Fed2 are di�erent from one another (not structurally but in
terms of their IRIs). As a consequence, the vocabulary mapping of Table 1 has to
be adapted accordingly for each federation member and, hence, every federation
member in Fed2 is associated with a di�erent vocabulary mapping. For instance,
the versions of the �rst mapping rule in Table 1 for the �rst two members of
Fed2 are lubm:Course0 ≡ global:Course and lubm:Course1 ≡ global:Course, respectively.

Queries: After creating the federations, we designed seven benchmark queries
that are expressed in terms of the global vocabulary. Thus, they can be used
for all three federations. As shown in Table 2, these queries di�er regarding the
types of vocabulary mapping rules that are relevant to them, both in the context

16 S. Cheng et al.

Figure 1. Query planning time (ms) and query execution time (ms) for the test queries
over di�erent federations. Fed0: All federation members use the global vocabulary, no
mappings needed. Fed1: All federation members use the same vocabulary, di�erent
from the global vocabulary. Fed2: Each federation member uses a di�erent vocabulary.

of the mapping-based rewriting of the initial query plans (cf. Section 5.2) and in
the context of the translation of intermediate results (as per De�nition 10).

Evaluation Metrics We report performance metrics based on the following
de�nitions: i) Query planning time (QPT) is the amount of time elapsed since
the input of a given source assignment until the plan for executing the query has
been determined, which includes rewriting the given source assignment (if neces-
sary, see Section 5.2) and selecting a join order. ii) Query execution time (QET)
is the amount of time needed for executing the selected plan until completion.

6.3 Overhead of Considering Vocabulary Mappings

To identify the overhead of considering vocabulary mappings during query pro-
cessing we compare the performance when executing the test queries over feder-
ations Fed1 and Fed2 using our approach versus executing them without vocab-
ulary mappings over Fed0. For each federation, we execute the seven test queries
sequentially. We run this process 11 times, with the �rst run as warm up. Fig-
ure 1 illustrates the average QPT and QET of the other 10 runs, with error bars
representing the standard deviation of the average sum of QPT and QET.

As a �rst observation, we notice that the query planning times across all
queries for the di�erent federations di�er only marginally. This observation sug-
gests that the vocabulary-related query rewriting consumes no signi�cant time.

In contrast, the query execution time increases noticeably when comparing
the baseline (Fed0) to the cases in which the query plans are rewritten based on
our approach (Fed1 and Fed2). This increase can be attributed to two factors.

The �rst, and major, factor is that the plans have been extended with l2g
operators which perform extra work that is not done by the plans in the baseline
case. The amount of this extra work di�ers for the di�erent queries as the sizes
of the intermediate results di�er (some of the queries are more selective than

Vocabulary Mappings in Query Plans for Federations of RDF Data Sources 17

others). For instance, there are 1,212 solution mappings to be processed by the
l2g operators for Q1, whereas there are 312,248 solution mappings for the l2g
operators for Q5; as a consequence, the QET of these two queries increases
accordingly (+15 ms for Q1 versus +172 ms for Q5).

Another factor is that the rewritten req operators may retrieve a greater
number of solution mappings compared to their baseline counterparts. In partic-
ular, such additional solution mappings may be retrieved because of the UNION
patterns added by the translation process (see line 4 in Algorithm 3 and line 9
in Algorithm 4). For queries for which this is the case, these additional solution
mappings cause even more extra work to be done by the l2g operators in the
rewritten plans and, thereby, amplify the �rst factor. Among our test queries,
this is the case for Q2�Q4. Yet, for Q2 and Q3, the number of additional solution
mappings retrieved by the rewritten req operators is negligible (less than 5). For
Q4, however, the rewritten req operators retrieve a total of 200 additional solu-
tion mappings, which contributes to an increased QET of +166 ms (+27.8%).

Overall, the increase in query execution time remains within an acceptable
range, with six of the seven queries (all but Q4) experiencing an increase of less
than 15% after rewriting the request operators and introducing l2g operators.

Finally, we compare the measurements for Fed1 and Fed2, which are only
minimally di�erent. This can be attributed to the fact that the datasets used in
both federations are structurally the same. Although each federation member in
Fed2 requires a di�erent vocabulary mapping, these mappings are isomorphic to
the vocabulary mapping used in Fed1. Consequently, the size of the intermediate
results remains unchanged for each query when executed over Fed1 or over Fed2.

7 Concluding Remarks
This paper presents a formal pipeline to translate query plans for queries ex-
pressed in a global vocabulary into plans that consider the vocabulary hetero-
geneity of RDF federations. The translation includes the use of an operator that
translates back the obtained local solutions into global ones, to be able to per-
form joins across federations members. The outcomes of our experimental study
indicate that the integration of vocabulary mappings into query processing un-
surprisingly introduces overhead, which, however, is within an acceptable range.

As part of our ongoing research, we are currently investigating various strate-
gies to optimize query performance by applying rewriting rules to the logical
query plans, with the aim of mitigating and minimizing these extra overheads.

As future work, we consider incorporating tools that can automatically gen-
erate mapping rules within our approach. In addition, we envision applying more
complex mapping rules, such as those involving union and intersection. With re-
spect to our broader long-term goals, we are interested in handling queries over
federations with di�erent types of data sources (i.e., not just RDF).

Acknowledgements. This work was funded by the National Graduate School
in Computer Science, Sweden (CUGS), and by Vetenskapsrådet (the Swedish
Research Council, project reg. no. 2019-05655).

18 S. Cheng et al.

References

1. Acosta, M., Hartig, O., Sequeda, J.F.: Federated RDF Query Processing. In: En-
cyclopedia of Big Data Technologies. (2019)

2. Acosta, M., Vidal, M.E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: An
Adaptive Query Processing Engine for SPARQL Endpoints. In: Proc. of the 11th
International Semantic Web Conference (ISWC) (2011)

3. Aranda, C.B., Polleres, A., Umbrich, J.: Strategies for Executing Federated Queries
in SPARQL1.1. In: Proc. of the 13th Int. Semantic Web Conference (ISWC) (2014)

4. Bouquet, P., Giunchiglia, F., Van Harmelen, F., Sera�ni, L., Stuckenschmidt, H.:
C-OWL: Contextualizing Ontologies. In: Proc. of the 2nd International Semantic
Web Conference (ISWC) (2003)

5. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: Optimizing
Federated SPARQL Queries. In: Proc. of the 11th SEMANTICS Conference (2015)

6. Cheng, S., Hartig, O.: FedQPL: A Language for Logical Query Plans over Het-
erogeneous Federations of RDF Data Sources. In: Proc. of the 22nd Int. Conf. on
Information Integration and Web-based Applications & Services (iiWAS) (2020)

7. Collarana, D., Galkin, M., Traverso-Ribón, I., Vidal, M.E., Lange, C., Auer, S.:
MINTE: Semantically Integrating RDF Graphs. In: Proc. of the 7th Int. Conference
on Web Intelligence, Mining and Semantics (2017)

8. Euzenat, J., Shvaiko, P.: Ontology Matching, Second Edition. Springer (2013)
9. Guo, Y., Pan, Z., He�in, J.: LUBM: A Benchmark for OWL Knowledge Base

Systems. J. Web Semant. 3(2-3), 158�182 (2005)
10. Isele, R., Bizer, C.: Active Learning of Expressive Linkage Rules Using Genetic

Programming. Journal of Web Semantics 23, 2�15 (2013)
11. Joshi, A.K., Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.P., Damova, M.:

Alignment-Based Querying of Linked Open Data. In: Proc. of the 11th Int. Conf.
on Ontologies, DataBases, and Applications of Semantics (ODBASE) (2012)

12. Makris, K., Bikakis, N., Gioldasis, N., Christodoulakis, S.: SPARQL-RW: Trans-
parent Query Access over Mapped RDF Data Sources. In: Proc. of the 15th Int.
Conf. on Extending Database Technology (EDBT) (2012)

13. Makris, K., Gioldasis, N., Bikakis, N., Christodoulakis, S.: Ontology Mapping and
SPARQL Rewriting for Querying Federated RDF Data Sources. In: Int. Conf. on
Ontologies, DataBases, and Applications of Semantics (ODBASE) (2010)

14. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM
Trans. Database Syst. 34(3) (2009)

15. Polleres, A., Schar�e, F., Schindlauer, R.: SPARQL++ for Mapping Between RDF
Vocabularies. In: Proc. of the Int. Conf. on Ontologies, DataBases, and Applica-
tions of Semantics (ODBASE) (2007)

16. Saleem, M., Potocki, A., Soru, T., Hartig, O., Ngomo, A.N.: CostFed: Cost-Based
Query Optimization for SPARQL Endpoint Federation. In: Proc. of the 14th Int.
Conf. on Semantic Systems (SEMANTICS) (2018)

17. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization
Techniques for Federated Query Processing on Linked Data. In: Proceedings of the
10th International Semantic Web Conference (ISWC) (2011)

18. Vidal, M., Castillo, S., Acosta, M., Montoya, G., Palma, G.: On the Selection of
SPARQL Endpoints to E�ciently Execute Federated SPARQL Queries. Trans.
Large-Scale Data- and Knowledge-Centered Systems 25 (2016)

19. Wang, X., Tiropanis, T., Davis, H.C.: Optimising Linked Data Queries in the
Presence of Co-reference. In: 11th Ext. Semantic Web Conference (ESWC) (2014)

	Considering Vocabulary Mappings in Query Plans for Federations of RDF Data Sources
	Introduction
	Related Work
	Preliminaries
	Vocabulary-Aware Formalization of Queries
	Vocabularies and Vocabulary Mappings
	Vocabulary-Aware Evaluation Semantics

	Vocabulary-Aware Query Plans
	Vocabulary-Aware Extension of FedQPL
	Creation of Vocabulary-Aware Query Plans

	Evaluation
	Implementation
	General Experiments Setup
	Overhead of Considering Vocabulary Mappings

	Concluding Remarks

