
A Cost Model to Optimize Queries over
Heterogeneous Federations of RDF Data Sources
Sijin Cheng1,∗,†, Olaf Hartig1

1Linköping University, SE-58183 Linköping, Sweden

Abstract
Federated processing of queries over RDF data sources offers significant potential when a SPARQL query
cannot be answered by a single data source alone. However, finding efficient plans to execute a query
over a federation is challenging, especially if different federationmembers provide different types of data
access interfaces. Different interfaces imply different request types, different forms of responses, and
different physical algorithms that can be used, each of which consumes varying amounts of resources
during query execution. This heterogeneity poses additional obstacles to the task of planning query
executions, in addition to the inherent complexity arising from numerous possible join orderings and
various physical algorithms. As a first step to address these challenges, we propose a cost model that
captures the resource requirements of different operators depending on the type of federation member,
allowing us to estimate cost of a given query execution plan without actually executing it. To evaluate
our approach, we conduct experiments on FedBench with our cost model and compare it to the current
state-of-the-art approach to query planning for heterogeneous federations of RDF data sources.

Keywords
Heterogeneous Federations, Cost Model, Query Optimization

1. Introduction

For queries that cannot be answered by accessing a single data source, a federation of RDF
data sources becomes essential to collectively answer a query. Processing such a query is chal-
lenging as not all parts of the query need to be issued to each federation member. Effectively
grouping the subqueries and determining which parts are to be issued to which of the federa-
tion members may impact the overall query performance significantly, and the order in which
the results of the subqueries are joined is another important performance-related factor. Over
the past decade, a number of approaches have been proposed to improve the performance of
processing such queries (e.g., [1, 2, 3, 4, 5, 6]). One line of work is focused on the source selec-
tion phase, which aims to split a given SPARQL query into subqueries that can be assigned to
federation members. The objective is to ensure that each subquery is assigned to only those
federation members that can provide a nonempty result (e.g., [5, 7]). Another research direc-

∗Corresponding author.
†
These authors contributed equally.

sijin.cheng@liu.se (S. Cheng); olaf.hartig@liu.se (O. Hartig)
https://www.ida.liu.se/~sijch63/ (S. Cheng); http://olafhartig.de/ (O. Hartig)
0000-0003-4363-0654 (S. Cheng); 0000-0002-1741-2090 (O. Hartig)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:sijin.cheng@liu.se
mailto:olaf.hartig@liu.se
https://www.ida.liu.se/~sijch63/
http://olafhartig.de/
https://orcid.org/0000-0003-4363-0654
https://orcid.org/0000-0002-1741-2090
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

tion involves query planning heuristics, which are typically used to determine the join order
in logical plans. Furthermore, some studies propose cost models to determine optimal physical
query plans (e.g., [3]).

All these approaches focus only to homogeneous federations, assuming that all federation
members provide a SPARQL endpoint interface. In recent years, however, other types of inter-
faces were proposed, including the Triple Pattern Fragment (TPF) interface [8], the Bindings-
Restricted TPF (brTPF) interface [9], the SaGe interface [10], and the smart-KG interface [11].
In the federated setting, each federation member may support a different type of interface
to access its RDF dataset. The resulting heterogeneity of federations poses extra challenges
that render many of the existing source selection approaches, heuristics, and cost models in-
adequate [12]. These challenges are primarily due to the features of different interfaces. For
instance, different interfaces may require (or enable!) federation engines to leverage specific
physical operators, not all forms of subqueries can be answered directly by every interface, and
different interfaces may provide different forms of metadata relevant for query processing.

Recently, Heling and Acosta proposed a query planner that is designed to address these
challenges of query processing over heterogeneous data sources [13]. This query planner builds
left-deep query plans, for which it first determines a join order based on cardinality estimation.
Thereafter, the planner selects join algorithms, choosing between a symmetric hash join and
bind join, where the choice is made based on the estimated number of requests needed to
execute the join. We argue that deciding the join order first and determining the physical
algorithm afterwards might overlook the optimal plan, as the order becomes fixed without
considering any features of federation members. Moreover, we believe that, when determining
the physical algorithm, it is crucial to consider not only the number of requests, but also factors
such as the size of data to be transferred and the amount of work that is processed by the engine.

In this paper, we propose a cost model that enables to estimate resource usage in physical
plans, considering factors such as the number of requests, the size of data transferred, and the
amount of work need to be done by the federation engine. Our cost model considers different
features that federationmembers have when using different types of interfaces. To evaluate the
effectiveness of the proposed cost model, we employ it in a greedy plan-enumeration algorithm
similar to the one used byHeling andAcosta’s approach [13] and, then, compare the approaches
experimentally based on the FedBench benchmark. The experiments show that applying our
cost model can result in a plan that requires less data to be transferred, without a significant
increase in query execution time. In particular, for queries with UNION operators in subqueries
after source selection, our cost model is able to find a plan that requires significantly less data
to be transferred, resulting in less query execution time with higher completeness of results.

2. Preliminary

This section introduces concepts, notations and a running example used in the rest of the paper.
To represent query plans in this paper we use the FedQPL language as introduced in our earlier
work [14]. The syntax of FedQPL expressions is defined as follows.

Definition 1. A FedQPL expression 𝜑 is constructed from the following grammar, where req,
tpAdd, bgpAdd, join, union, mj, mu, (,), are terminal symbols. 𝜌 is an expression in the re-

quest language 𝐿req of some interface [14] (e.g., triple patterns, whole SPARQL patterns), fm is
a federation member, 𝑡𝑝 is a triple pattern, 𝐵 is a BGP, and Φ is a nonempty set of FedQPL ex-
pressions.

𝜑 ∶∶= req𝜌fm | tpAdd𝑡𝑝fm(𝜑) | bgpAdd𝐵fm(𝜑) | join(𝜑, 𝜑) | union(𝜑, 𝜑) | mjΦ | muΦ |

The first operator, req, captures the intention to retrieve the result of a certain (sub)query 𝜌
from a given federation member. The unary operator tpAdd captures the intention to access
a federation member to obtain solution mappings for a single triple pattern that must be com-
patible with solution mappings obtained from the plan represented by the given subexpression.
The operator bgpAdd is a BGP-based variation of tpAdd. In contrast to these operators, join
is a binary operator that joins two inputs, capturing the intention to get the input sets of solu-
tion mappings independently, and then join them in the query federation engine. As for the
remaining operators, union lifts the standard SPARQL algebra operator union into the FedQPL
language, whereas mj and mu are multiway variations of join and union to capture the inten-
tion to apply a multiway algorithm that can combine an arbitrary number of inputs. For a
formal definition of the semantics of these operators, refer to our earlier work [14].

Example 1. As our running example, consider a basic graph pattern (BGP) 𝐵ex={𝑡𝑝1, 𝑡𝑝2}with
𝑡𝑝1 = (?𝑥, foaf:name, "Alice") and 𝑡𝑝2 = (?𝑥, dbo:country, dbr:Canada), and a heterogeneous
federation 𝐹ex with three members, denoted by fm1, fm2, and fm3. While federation members
fm1 and fm2 provide a SPARQL endpoint interface, fm3 provides a TPF interface.

The following fragment of FedQPL captures the output of source selection processes [14].

Definition 2. A source assignment is a FedQPL expression that is constructed using only
the operators req,mj, andmu such that, for each subexpression of the form req𝜌fm, it holds that
𝜌 is a triple pattern or a BGP.

Example 2. For the running example (in Example 1), we assume that members fm1 of our
example federation 𝐹ex can contribute matching triples for 𝑡𝑝1 of the example BGP 𝐵ex (cf. Ex-
ample 1), whereas 𝑡𝑝2 is matched in the data of fm2 and fm3. Hence, we may use the following
source assignment 𝑎ex for 𝐵ex over 𝐹ex.

mj{ req𝑡𝑝1
fm1

, mu{req𝑡𝑝2
fm2

, req𝑡𝑝2
fm3

} } (1)

A left-deep logical plan (see Figure 1a) can be converted from source assignment (Equation 1)
by converting multiway join (mj) to binary join directly. Further from a logical plan to a phys-
ical plan, physical algorithms for each operator can be established directly based on a logical
plan. Alternatively, the physical plan can be reconstructed by considering the possible physical
algorithms for each operator in a combined manner. The physical algorithms that can be used
for each logical operator of FedQPL depend on the type of interface. Table 1 (left-hand side)
lists the physical algorithms that we consider in this work. For the unary operators tpAdd𝑡𝑝fm(𝜑)
and bgpAdd𝐵fm(𝜑), the operator accesses federation members with requests where input solu-
tion mappings are shipped as part of the requests. A straightforward algorithm to implement

(a) A logical plan (b) Physical plan 1 (c) Physical plan 2

Figure 1: A left-deep logical plan (a) and possible physical plans (b, c) for the running example. The
annotations in parentheses indicate the physical algorithm used by each operator (SHJ for symmetric
hash join, BJ for bind join, and index-NLJ for index-nested-loops join). The orange numbers present a
hypothetical size of intermediate results as used for illustrating the cost calculation in Example 4.

a unary operator is to use an index-nested loop join (index-NLJ). The input solution bindings
are iterated for creating requests with updated 𝑡𝑝 or 𝐵, where the variables are replaced with
obtained variable bindings. If the federation member provides a TPF interface, only the index-
NLJ can be applied as TPF interface restricts the type of queries that can be answered by the
server to single triple patterns. If the federation member uses a brTPF interface, a set of in-
put solution mappings (variable bindings for the shared variable) can be attached to a brTPF
request. While federation members support the SPARQL endpoint, as further alternatives, the
FILTER, UNION and FILTER operators can be used for shipping the input bindings along with
the query pattern as requests [15], denoted as bind join (BJ). The binary operator join(𝜑1, 𝜑2)
joins input solution mappings in the query federation engine, so the physical algorithm is not
affected by the interface type that the federation member uses. In this paper, the symmetric
hash join (SHJ) (see [15]) is used for implementing join by default, while there are other options,
such as hash join and merge join.

Example 3. For the running example, the logical operator join can be implemented via
SHJ (Figure 1b) or rewriting the logical plan to push join into the union (Figure 1c). In the
latter case, tpAdd𝑡𝑝2

fm2
can use an index-NLJ or any variations of the bind join, while tpAdd𝑡𝑝2

fm3
can only apply index-NLJ as fm3 provides a TPF interface. Regarding query execution, subplans
of binary operators (e.g., SHJ or union) may be executed in parallel, for example, tpAdd𝑡𝑝2

fm2
and

tpAdd𝑡𝑝2
fm3

of Figure 1c can consume the intermediate results of req𝑡𝑝1
fm1

at the same time.

3. Cost Model

Each physical query plan consumes a specific amount of different kinds of resources when it is
executed, and these resource requirements can differ significantly for different possible plans
for the same query. In this section, we present a cost model that is designed to capture these
resource requirements and can be used to estimate the cost of a given plan without actually
executing the plan. In this cost model, the (estimated) cost of a query plan is calculated as a

Table 1
Physical algorithms for each logical operator (left),
Number of requests for each combination of physical algorithms and interface types (right)
Logical Operator Interface of fm Physical Algorithm #requestsest

tpAdd𝑡𝑝
fm(𝜑)

SPARQL endpoint
index-NLJ |sols(𝜑)|
BJ(UNION)
BJ(FILTER)
BJ(VALUES)

⌈ |sols(𝜑)|
blockSize

⌉

TPF index-NLJ |sols(𝜑)| ⋅ ⌈ 𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑔𝑒𝑁𝑢𝑚
|sols(𝜑)| ⌉

brTPF
index-NLJ

brTPF-based BJ ⌈ |sols(𝜑)|
blockSize

⌉ ⋅ ⌈ 𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑔𝑒𝑁𝑢𝑚
⌈ |sols(𝜑)|
blockSize

⌉ ⌉

bgpAdd𝐵
fm(𝜑) SPARQL endpoint

index-NLJ |sols(𝜑)|
BJ(UNION)
BJ(FILTER)
BJ(VALUES)

⌈ |sols(𝜑)|
blockSize

⌉

req𝑡𝑝
fm

SPARQL endpoint request 1
TPF, brTPF TPF request ⌈ 𝑐𝑎𝑟𝑑(𝑡𝑝,fm)

pageSize
⌉

req𝐵
fm SPARQL endpoint request 1

join(𝜑1, 𝜑2)
aaaaa

SHJ 0

union(𝜑1, 𝜑2)
aaaaa

Union 0

weighted sum of multiple metrics, and each of these metrics is calculated by summing up corre-
sponding measures from all operators in the plan. In the following, we first define the metrics
based on which the cost of a physical plan is captured in our cost model, and introduce func-
tions for measuring each of these metrics for each physical operator. Thereafter, we present
how these cost metrics are used to calculate the overall cost for an entire physical plan.

3.1. Cost Metrics

The metrics of our cost model are defined in terms of the costs of communication between the
federation engine and the federation members and the processing costs induced at the federa-
tion engine. The communication cost considers both the request process and the response pro-
cess, including the number of requests (#requestsest), the size of shipped request data for all re-
quests together (#reqDataest), and the size of relevant responses all together (#respRDFtermsest).
The metric for capturing the processing cost by the federation engine, denoted as fedProcessest,
is estimated based on the cardinality of intermediate results of the query plan. Since binary
operators, join and union, do not interact with the federation members, there is no associated
communication cost involved. Therefore, the primary cost incurred by binary operations is the
processing cost by the federation engine.

3.1.1. Number of requests (#requestsest)
To estimate the number of requests involved during query execution, it is important to note
that this number depends not only on the physical algorithm but also on the interface type of
the accessed federation member. In other words, the same physical algorithm may necessitate
a different number of requests if the federation member uses different interfaces. Therefore, we

Table 2
The total size of shipped request data

Logical Operator Physical Algorithm #reqDataest fedProcessest

tpAdd𝑡𝑝
fm(𝜑)

index-NLJ
BJ(UNION) 3 ⋅ |sols(𝜑)|

joinCard(𝑡𝑝, fm, sols(𝜑))BJ(VALUES) 3 + |sols(𝜑)| ⋅ joinVars(𝑡𝑝, 𝜑)
BJ(FILTER)
brTPF algorithm 3 + 2 ⋅ |sols(𝜑)| ⋅ joinVars(𝑡𝑝, 𝜑)

bgpAdd𝐵
fm(𝜑)

index-NLJ
BJ(UNION) 3 ⋅ countTP(𝐵) ⋅ |sols(𝜑)|

joinCard(𝐵, fm, sols(𝜑))BJ(VALUES) 3 ⋅ countTP(𝐵) + |sols(𝜑)| ⋅ joinVars(𝐵, 𝜑)
BJ(FILTER) 3 ⋅ countTP(𝐵) + 2 ⋅ |sols(𝜑)| ⋅ joinVars(𝐵, 𝜑)

req𝑡𝑝
fm request 3 card(𝑡𝑝, fm)

req𝐵
fm request 3 ⋅ countTP(𝐵) card(𝐵, fm)

join(𝜑1, 𝜑2) SHJ 0 joinCard(sols(𝜑1), sols(𝜑2))
union(𝜑1, 𝜑2) Union 0 sols(𝜑1) + sols(𝜑2)

Table 3
The total size of shipped response data

Logical Operator Interface of fm #respRDFtermsest

tpAdd𝑡𝑝
fm(𝜑)

SPARQL endpoint |vars(𝑡𝑝)| ⋅ joinCard(𝑡𝑝, fm, sols(𝜑))
TPF, brTPF 3 ⋅ joinCard(𝑡𝑝, fm, sols(𝜑))

bgpAdd𝐵
fm(𝜑) SPARQL endpoint |vars(𝐵)| ⋅ joinCard(𝐵, fm, sols(𝜑))

req𝑡𝑝
fm

SPARQL endpoint |vars(𝑡𝑝)| ⋅ 𝑐𝑎𝑟𝑑(𝑡𝑝, fm)
TPF, brTPF 3 ⋅ 𝑐𝑎𝑟𝑑(𝑡𝑝, fm)

req𝐵
fm SPARQL endpoint |vars(𝐵)| ⋅ 𝑐𝑎𝑟𝑑(𝐵, fm)

provide a set of functions formeasuring #requestsest for each combination of physical algorithm
and interface type of federation members (illustrated in the right part of Table 1)

For the req𝜌fm operator with 𝜌 a BGP 𝐵, the number of requests is fixed to one, since this oper-
ator is considered valid only when the federation member employs an interface that supports
BGP requests (e.g., SPARQL endpoints). For the req𝜌fm operator with 𝜌 a triple pattern 𝑡𝑝, the
federation member can use any type of interface that supports triple pattern requests (e.g.,
SPARQL endpoints, TPF servers, and brTPF servers). If the federation member provides a
SPARQL endpoint, the number of requests is one whereas, for TPF servers and brTPF servers,
the number of requests depends on both the cardinality of the results of req𝑡𝑝fm and the page size
since TPF and brTPF interfaces employ a paging mechanism. The cardinality of the results of
req𝑡𝑝fm, denoted as card(𝑡𝑝, fm), represents the number of triples in the RDF dataset of fm that
match the given triple pattern 𝑡𝑝. The page size (pageSize) refers to the maximum number of
triples that can be retrieved per request from a TPF server or a brTPF server and is typically
set to 100. Consequently, the number of requests can be calculated as the ceiling value of the
division between the cardinality and the page size: ⌈card(𝑡𝑝, fm)/pageSize⌉.

The bgpAdd𝐵fm(𝜑) operator can be implemented using some physical operators: the index-
nested loop join (index-NLJ) operator or the bind join (BJ) operator. If the bgpAdd operator
is implemented via an index-NLJ algorithm, the number of requests (#requestsest) is primarily

influenced by the number of solution mappings that the operator receives as input from its sub-
plan 𝜑, represented as |sols(𝜑)|. During execution, for each input solution mapping 𝜇, the join
variables (i.e. joinVars(𝐵, 𝜑)) of the BGP 𝐵 are substituted with the bindings from 𝜇, and then
a new BGP 𝐵′ is sent to fm. Hence, each solution mapping causes one request and, thus, the
number of requests #requestsest is equivalent to |sols(𝜑)|. Alternatively, the BJ algorithm can be
applied to reduce the number of requests by consolidating multiple bindings together with the
BGP 𝐵 into a single request. The number of bindings that can be attached for one request is de-
termined based on the server capabilities, denoted as blockSize. Hence, the number of requests
depends on the total number of input solution mappings and page size: ⌈|sols(𝜑)|/blockSize⌉.

For the tpAdd𝑡𝑝fm(𝜑) operator, the number of requests is similar to the bgpAdd operator in
case the federation member provides a SPARQL endpoint. However, if the federation member
is a TPF server, only the index-NLJ algorithm can be used. Given that TPF servers adopt a
paging mechanism, the total number of pages is at least equal to the number of input solution
mappings, as each such solution mapping results in at least one request. In cases in which
all matching triples cannot be retrieved with a single page, the total number of pages with all
responses together can be estimated based on the join cardinality (joinCard) divided by the
page size (pageSize).

𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑔𝑒𝑁𝑢𝑚 = max {|sols(𝜑)| , ⌈ joinCard(𝑡𝑝, fm, sols(𝜑))
pageSize

⌉} (2)

Furthermore, the number of input solution mappings is |sols(𝜑)| and each such solution
mapping results in at least one request. In our analysis, we make an assumption that the
matching triples are evenly distributed for each of such input solution mapping, implying that
each request is expected to yield an equivalent number of pages. Consequently, the estimated
number of pages for each input solution mapping can be calculated as Equation 3. Hence,
the total number of requests for tpAdd𝑡𝑝fm(𝜑) with a TPF server fm is estimated as Equation 4.

𝑎𝑣𝑔𝑃𝑎𝑔𝑒𝑁𝑢𝑚 = ⌈𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑔𝑒𝑁𝑢𝑚
|sols(𝜑)| ⌉ (3) |sols(𝜑)| ⋅ 𝑎𝑣𝑔𝑃𝑎𝑔𝑒𝑁𝑢𝑚 (4)

If federation members provide a brTPF interface, an index-NLJ algorithm or brTPF algorithm
can be applied. In case index-NLJ is applied, the total number of requests is the same as for
the TPF interface. If the brTPF algorithm is applied, a set of input solution mappings can be
attached to a brTPF request. The number of bindings that can be attached to each request is
defined as block size (blockSize). Under the even distribution assumption, the total number of
requests for the brTPF algorithm is estimated as follows.

⌈ |sols(𝜑)|
blockSize

⌉ ⋅ ⌈ totalPageNum
⌈ |sols(𝜑)|
blockSize⌉

⌉ (5)

3.1.2. Total size of shipped request data (#reqDataest)
Regarding the triple pattern request operator, the total size of shipped request data is estimated
as the number of RDF terms and variables in all responses together (listed in the third column

of Table 2). Specifically, for a single triple pattern request, the value of #reqDataest is deter-
mined as 3, taking into account the three components of the triple pattern. In the case of a
basic graph pattern (𝐵), the value of #reqDataest becomes 3 multiplied by the number of triple
patterns (countTP(𝐵)) within the basic graph pattern 𝐵.

Concerning the tpAdd𝑡𝑝fm(𝜑) operator, the size of shipped request data depends on both the
number of input solution mappings and variables that are common across the given subquery
with input solutionmappings, denoted by joinVars(𝑡𝑝, 𝜑). Different physical algorithms exhibit
different total sizes of shipped request data. Specifically, for the index-NLJ algorithm, each
request contains a single triple pattern where the join variables are substituted by bindings of
the input solution mappings. Hence, the size of shipped request data of all requests is three
times the number of input solution mappings, 3⋅|sols(𝜑)|. For the BJ, the size of shipped request
data is different for different implementations of BJ (i.e., UNION, FILTER or VALUES). When
using UNION to implement bind join, triple patterns with bound variables are consolidated
into one request with the UNION operator, resulting in a total size of shipped request data
equivalent to that of index-NLJ, despite the size for individual requests being different. In case
FILTER is applied, a new request is constructed based on the original triple pattern along with
attached join variables as well as corresponding values. Consequently, the size of shipped
request data for all queries is three plus 2 ⋅ |sols(𝜑)| ⋅ joinVars(𝑡𝑝, 𝜑). Using VALUES is similar to
using FILTER, but VALUES allows for specifying multiple values for given variables, to which
only the bound values in the input solution mappings would be attached. As a result, the
overall size of shipped request data decreases to three plus |sols(𝜑)| ⋅ joinVars(𝑡𝑝, 𝜑).

3.1.3. Total size of shipped response data (#respRDFtermsest)

The overall size of shipped response data mainly depends on two factors: the estimated number
of solution mappings and the type of interface. Different types of interfaces have different
response types. For instance, TPF and brTPF servers return matching triples in their responses,
whereas SPARQL endpoints directly respond with solution mappings. For this reason, the size
of shipped data in TPF/ brTPF responses depends only on the total number of matching triples,
while the size of shipped response data for SPARQL endpoints also depends on the number of
variables in the corresponding subquery (as illustrated in Table 3), where |vars(𝑡𝑝)| and |vars(𝐵)|
represents the number of distinct variables in the triple pattern 𝑡𝑝 or BGP 𝐵, respectively).

3.1.4. Processing cost by federation engines (fedProcessest)

The amount of work that needs to be done by the federation engine is hard to measure accu-
rately. In an effort to obtain a rough estimation, we adopt a simplified approach by considering
the size of intermediate results that need to be processed by the federation engine. The size of
intermediate results is listed in the fourth column of Table 2.

3.2. Cost Calculation

In our proposed model, the cost of a query plan is calculated as a weighted sum of multiple met-
rics. Each metric is computed by aggregating the corresponding measures from all operators

encompassed within the plan. For example, the total number of requests for the physical plan
is obtained by summing the number of requests for each operator in the plan (see Equation 6).

total#requestsest = ∑
op∈subPlan

#requestsest(op) (6)

In addition, our cost model accommodates parallel evaluation of operators, thereby capturing
the effects of parallelism. If the root operator of a physical plan is an SHJ or a union, the work
performed by the corresponding two subplans (referred to as subPlan1 and subPlan2) can occur
in parallel. The overall work processed by the federation engine (totalfedProcessest) is calculated
using the Equation 7, which applies specifically for SHJ and union operators. In addition, this
formula for parallelism is only used for fedProcessest but not for any communication costs.

fedProcessest(rootOp) +max { ∑
op∈subPlan1

fedProcessest(op), ∑
op∈subPlan2

fedProcessest(op)} (7)

Example 4. To illustrate these concepts, Table 4 presents the metric values for two physical
plans (1b and 1c) for our running example. The total number of requests is computed by sum-
ming up values for all operators in each plan. Furthermore, the total work processed by the
federation engine is evaluated with considering parallelism. For instance, the total amount
of work by the federation engine for the physical plan (1b) is 2105, which is calculated by:
5 + 𝑚𝑎𝑥(80, 1100 + 𝑚𝑎𝑥(100, 1000)).

Table 4
Cost calculation for plan(b) and plan(c) of the running example (in Figure 1)

operators #requestsest #reqDataest #respRDFtermsest fedProcessest

join 0 0 0 5
req𝑡𝑝1

fm1
1 3 80 ⋅ 1 80

union 0 0 0 100+1000
req𝑡𝑝2

fm2
1 3 100 ⋅ 1 100

req𝑡𝑝2
fm3

1000/100 3 3⋅1000 1000
sum 12 9 3180 2105

operators #requestsest #reqDataest #respRDFtermsest fedProcessest

union 0 0 0 5
tpAdd𝑡𝑝2

fm2
(𝜑) ⌈80/30⌉ 3+2⋅80⋅1 0 0

tpAdd𝑡𝑝2
fm3

(𝜑) 80 3⋅80 3⋅5 5

req𝑡𝑝1
fm1

1 3 80⋅1 80
sum 84 406 95 90

To determine the total cost of a physical plan while considering the combination of different
cost metrics, a weighted sum can be employed (see Equation 8). The weights for each metric
may be adjusted based on the specific scenario and user requirements. For instance, in a sce-
nario where the network delay is substantial and the number of requests dominates the total
processing time, using a greater value for 𝜔𝑖 may be beneficial in identifying a suitable plan for
the scenario. In the evaluation of our cost model presented in this paper, a uniform weight of
1 is assigned to all metrics, maintaining equal importance across the board.

totalCost =𝜔𝑖 ⋅ total#requestsest + 𝜔𝑗 ⋅ total#reqDataest +
𝜔𝑚 ⋅ total#respRDFtermsest + 𝜔𝑛 ⋅ totalfedProcessest (8)

3.3. Cardinality Estimation

As indicated in the preceding section, the metrics of our cost model rely on the expected car-
dinality of intermediate results. It is noteworthy that our cost model is not tied to any specific

approach for estimating such cardinalities. Instead, our cost model is designed to accommodate
any approach that can be utilized to obtain such cardinality estimates.

For the evaluation of our cost model in this paper, we are adopting a comparatively simple
method for cardinality estimation [13]. This method is based on issuing requests to the federa-
tion members. For each subquery with only one req operator, the number of triples that match
the given graph pattern can be obtained by issuing a request to the corresponding federation
member. The concrete type of this request depends on the type of interface employed by the
federation member. If the federation member provides a SPARQL endpoint, the cardinality of
a graph pattern (𝑡𝑝 or 𝐵) can be obtained by constructing a SELECT COUNT query for each
subquery. If the federation member uses a TPF interface or a brTPF interface, a request can be
issued to retrieve the first page of matching triples, and the count estimates can be obtained
from the metadata of the retrieved pages.

In the case of subqueries involving operators other than req operator, the expected cardinal-
ity of the subquery can be determined by recursively applying a cardinality estimation function
to each subquery. Specifically, the cardinality of join operations involving two subqueries in
the approach that we adopt for the evaluation in this paper is estimated as the minimum of
their respective cardinalities, while the cardinality of union operations is computed by sum-
ming the individual cardinalities [13]. However, as mentioned above, our cost model can also
be used in combination with other cardinality estimation approaches.

4. Evaluation

This section presents an empirical evaluation in which we study the effectiveness of our cost
model by using Heling and Acosta’s approach [13] as a baseline. We first describe the imple-
mentation that we use and the experiment setup, including the datasets, queries, and evaluation
metrics. Thereafter, we present the measurements and discuss our observations.

4.1. Implementation

We implemented the proposed cost model in our query federation engine HeFQUIN1 in com-
bination with a simple greedy plan-enumeration algorithm. This algorithm produces left-deep
execution plans for source assignments consisting of joins over subplans that may be individual
request operators or unions of requests. In particular, after picking a first such subplan based
on the estimated cost, and using that subplan as the starting point for building up a left-deep
plan, the algorithm iterates over the remaining subplans that can be joined with the partial
left-deep plan that has been built so far (i.e., ignoring subplans that would introduce cross
products, unless there are no other subplans left). In each step of this iteration, the algorithm
considers all available subplans in combination with all possible algorithms for joining each
such subplan with the current left-deep plan, and then greedily picks the least costly of these
options. Additionally, we extended HeFQUIN with an implementation of the approach that
Heling and Acosta proposed [13] to produce left-deep execution plans for the aforementioned

1https://github.com/LiUSemWeb/HeFQUIN

https://github.com/LiUSemWeb/HeFQUIN

types of source assignments. For the experiments, such source assignments are given to the
engine in the form of SPARQL queries with SERVICE clauses.

4.2. Experiment Setup

All experiments described in this paper have been performed on a server machine with two
8-core Intel Xeon E5-2667 v3@3.20GHz CPUs and 256 GB of RAM. The machine runs a 64-bit
Debian GNU/Linux 10 server operation system. On this machine, we use KOBE [16] (a bench-
marking system based on Kubernetes infrastructures) to containerize and configure federations
of RDF datasets, queries, federation engines and experiments. For setting up heterogeneous
federations, we use Virtuoso v7.20 for configuring a SPARQL endpoint, the Server.js (v3.3.0)2

and Java brTPF server3 to deploy TPF and brTPF servers with HDT backends. The source code
and experimental results are provided online.4

Datasets and Queries: The datasets and queries we use for the evaluation are from Fed-
Bench [4], which involves 9 datasets containing a total number of 10M triples. Each dataset can
be exposed using different types of interfaces. We use the same types of federations as used
by Heling and Acosta. These two federations differ in terms of the types of interfaces used
by the federation members (illustrated in Table 5). We use a total of 25 queries from Cross
Domain (cd1–7), Life Science (ls1–7) and Linked Data (ld1–11). For these queries, we manually
applied the source selection approach of FedX [5] in order to produce source assignments as
assumed as input for the tested approaches (cf. Section 4.1).

Table 5
Two Heterogeneous Federations of RDF Data Sources (differ in terms of the types of interfaces)

GeoNames DBpedia ChEBI Jamendo Drugbank SWDF LinkedMDB Kegg NYTimes
Fed I SPARQL SPARQL SPARQL TPF TPF TPF brTPF brTPF brTPF
Fed II TPF TPF TPF SPARQL SPARQL SPARQL brTPF brTPF brTPF

Evaluation Metrics We report performance metrics based on the following definitions:
i) Query execution time (QET) is the amount of time elapsed since the evaluation of the query
plan starts until the complete answer has been received. ii)Number of requests (#requests) is the
number of requests that are issued to federation members during the execution of the query.
iii) Size of data transferred (#respRDFterms) is represented as the total number of RDF terms that
are transferred from federation members to the federation engine. iv) Local work (fedProcess)
is the amount of work that needs to be done by the federation engine.

4.3. Experimental Results

Figures 2a and 2b illustrate the average query execution time per query for federations Fed I
and Fed II, respectively; Figures 2c and 2d illustrate the respective number of requests sent per
query, and Figures 2e and 2f illustrate the total size of data transferred from federation mem-
bers to the federation engine. We observe that there is not much difference between the two

2https://github.com/LinkedDataFragments/Server.js
3https://github.com/LiUSemWeb/Server.Java/tree/feature-brtpf
4https://github.com/LiUSemWeb/HeFQUIN-DMKG2023-Experiments

https://github.com/LinkedDataFragments/Server.js
https://github.com/LiUSemWeb/Server.Java/tree/feature-brtpf
https://github.com/LiUSemWeb/HeFQUIN-DMKG2023-Experiments

(a) Query execution time (Fed I) (b) Query execution time (Fed II)

(c) Overall number of requests (Fed I) (d) Overall number of requests (Fed II)

(e) Size of data transferred (Fed I) (f) Size of data transferred (Fed II)

Figure 2: Measurement results for each query in both federations

approaches for about half of queries (11 out of 24 queries). Compared to the baseline approach,
it also shows up that for some queries, the plans selected using our cost model require less data
to be retrieved from federation members without a significant increase in query execution time
(some queries have a significant reduction in query execution time). Table 6 illustrates these
queries for which there is a significant difference in the measurements (i.e., where the respec-
tive greater value is at least double the smaller value). All these are queries for which the plans
selected by the two approaches were different.

Based on Table 6, we observe that the number of queries that shows improvement varies
across the federations since the interface’s capabilities affect different queries. We find that,
for these queries, even though the plans selected using our cost model issue more requests to
the federation members, the query execution times are reduced or without significant increase,
but the total size of data transferred is significantly decreased! The best reduction in query
execution time occurs on the query ld8 over Fed I, which is nearly 300 times. Further, the plans
selected using our cost model produces more complete result than those using the baseline
approach, which is caused by the SPARQL endpoint as the Virtuoso server does not produce

Table 6
Measurements for the queries for which there is a significant difference between the two approaches
(i.e., where the respective greater value is at least double the smaller value). The blue highlighting
indicates cases in which our cost model is better than the baseline, while orange highlighting indicates
cases in which it is the other way around. Red-colored numbers (additionally marked with an asterisk
*) are cases in which the produced query result was incomplete.
Federation Measurement Approach cd3 ld1 ld3 ld4 ld7 ld8 ls3 ls4 ls5 ls6 ls7

baseline 26 491 621 156 41,752∗ 47,521∗ 2,647 18 1,075 168 496
QET

cost model 27 476 862 238 253 161 2,906 20 1,733 67 539
baseline 26 912 1,273 249 20∗ 280∗ 703 10 229 36 210

#requests
cost model 26 958 1,945 465 83 323 5,051 11 2,887 61 210
baseline 32 13,806 13,719 1,464 2,103,708∗ 2,132,372∗ 337,108 51 105,414 7,434 24,818

#dataTransferred
cost model 32 1,974 2,460 1,545 3,648 792 98,818 54 20,091 855 24,818
baseline 2 309 162 50 592∗ 18∗ 9,054 3 393 28 1,620

Fed I

#resultSize
cost model 2 309 162 50 1,216 22 9,054 3 393 28 1,620
baseline 37,473 378 429 11 672 106 14,040 17 3,533 71 5,178

QET
cost model 1,400 409 664 10 707 153 2,643 15 2,099 75 993
baseline 3,158 874 979 1 1,266 249 962 5 1,709 85 1,106

#requests
cost model 2,232 872 1,557 1 1,263 300 4,805 10 3,981 85 1,367
baseline 951,954 1,146 1,088 200 7,296 419 346,984 36 515,706 754 316,369

#dataTransferred
cost model 28,683 1,146 1,470 200 7,296 557 55,884 36 12,891 754 16,504
baseline 2 309 162 50 1,216 22 9,054 3 393 28 1,620

Fed II

#resultSize
cost model 2 309 162 50 1,216 22 9,054 3 393 28 1,620

complete results (at most 220), but this issue does not happen for the plans selected using our
cost model as this cost model not only considers the number of requests but also the size of
data transferred. This query is a case like the one illustrated in the running example 1c. Due
to this rewriting, the number of requests increases a bit on the number of requests (from 20 to
80), but the size of data transferred is reduced by more than 2600 times.

5. Summary and Future Work

In this paper we propose a cost model designed for query optimization over heterogeneous fed-
erations of RDF data sources. This cost model can be seamlessly integrated with a greedy algo-
rithm or a dynamic programming algorithm. With experimental evaluation, we have demon-
strated that the query plan selected using the cost model requires less data to be transferred
from federation members to the federation engine compared to the baseline approach. Fur-
thermore, for certain queries, leveraging our cost model achieves a better plan that not only
delivers complete results but also achieves shorter execution times.

To attain a more comprehensive understanding of the model’s capabilities and limitations,
we intend to conduct a more extensive evaluation of the cost model in our future work. This
evaluation shall involve testing with a diverse range of federation setups, exploring additional
types of interfaces, and accounting for network latency. Additionally, we aim to enhance our
cost model by also incorporating the processing cost incurred by the federation members. Fur-
thermore, we will explore opportunities to accommodate more expressive forms of query pat-
terns to further enhance the applicability of our cost model.

Acknowledgments
This work was funded by the National Graduate School in Computer Science, Sweden (CUGS),
and by the Swedish Research Council (Vetenskapsrådet, project reg. no. 2019-05655).

References

[1] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, E. Ruckhaus, ANAPSID: An Adaptive Query
Processing Engine for SPARQL Endpoints, in: Proc. of the 11th International Semantic
Web Conference (ISWC), 2011.

[2] A. Charalambidis, A. Troumpoukis, S. Konstantopoulos, SemaGrow: Optimizing Feder-
ated SPARQL Queries, in: Proc. of the 11th Int. Conf. on Semantic Systems, 2015.

[3] M. Saleem, A. Potocki, T. Soru, O. Hartig, A. N. Ngomo, CostFed: Cost-Based Query Op-
timization for SPARQL Endpoint Federation, in: Proc. of the 14th Int. Conf. on Semantic
Systems, 2018.

[4] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, T. Tran, FedBench: A Bench-
mark Suite for Federated Semantic Data Query Processing, in: Proceedings of the 10th
International Semantic Web Conference (ISWC), 2011.

[5] A. Schwarte, P. Haase, K. Hose, R. Schenkel, M. Schmidt, FedX: Optimization Techniques
for Federated Query Processing on Linked Data, in: Proceedings of the 10th International
Semantic Web Conference (ISWC), 2011.

[6] M. Vidal, S. Castillo, M. Acosta, G. Montoya, G. Palma, On the Selection of SPARQL
Endpoints to Efficiently Execute Federated SPARQL Queries, Trans. Large-Scale Data-
and Knowledge-Centered Systems 25 (2016).

[7] M. Saleem, A.-C. Ngonga Ngomo, HiBISCuS: Hypergraph-Based Source Selection for
SPARQL Endpoint Federation, in: Proc. of the European Sem. Web Conf. (ESWC), 2014.

[8] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester,
G. Haesendonck, P. Colpaert, Triple Pattern Fragments: A Low-Cost Knowledge Graph
Interface for the Web, Journal of Web Semantics 37 (2016).

[9] O. Hartig, C. Buil-Aranda, Bindings-Restricted Triple Pattern Fragments, in: 15th Ontolo-
gies, Databases, and Applications of Semantics (ODBASE), 2016.

[10] T. Minier, H. Skaf-Molli, P. Molli, SaGe: Web Preemption for Public SPARQL Query Ser-
vices, in: Proceedings of the Web Conference (WWW), 2019.

[11] A. Azzam, J. D. Fernández, M. Acosta, M. Beno, A. Polleres, SMART-KG: Hybrid Shipping
for SPARQL Querying on the Web, in: Proc. of The Web Conference (WWW), 2020.

[12] S. Cheng, O. Hartig, Source Selection for SPARQL Endpoints: Fit for Heterogeneous Fed-
erations of RDF Data Sources?, in: Proceedings of the 6thWorkshop on Storing, Querying
and Benchmarking Knowledge Graphs (QuWeDa), 2022.

[13] L. Heling, M. Acosta, Federated sparql query processing over heterogeneous linked data
fragments, in: Proceedings of the ACM Web Conference, 2022.

[14] S. Cheng, O. Hartig, FedQPL: A Language for Logical Query Plans over Heterogeneous
Federations of RDF Data Sources, in: Proc. of the 22nd Int. Conf. on Information Integra-
tion and Web-based Applications & Services (iiWAS), 2020.

[15] C. B. Aranda, A. Polleres, J. Umbrich, Strategies for executing federated queries in
SPARQL1.1, in: 13th International Semantic Web Conference, 2014.

[16] C. Kostopoulos, G. Mouchakis, A. Troumpoukis, N. Prokopaki-Kostopoulou, A. Charalam-
bidis, S. Konstantopoulos, KOBE: Cloud-native Open Benchmarking Engine for Federated
Query Processors, in: European Semantic Web Conference, 2021.

	1 Introduction
	2 Preliminary
	3 Cost Model
	3.1 Cost Metrics
	3.1.1 Number of requests (#requestsest)
	3.1.2 Total size of shipped request data (#reqDataest)
	3.1.3 Total size of shipped response data (#respRDFtermsest)
	3.1.4 Processing cost by federation engines (fedProcessest)

	3.2 Cost Calculation
	3.3 Cardinality Estimation

	4 Evaluation
	4.1 Implementation
	4.2 Experiment Setup
	4.3 Experimental Results

	5 Summary and Future Work

