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Abstract
This paper provides an overview of a model for
capturing properties of client-server-based query
computation setups. This model can be used to for-
mally analyze different combinations of client and
server capabilities, and compare them in terms of
various fine-grain complexity measures. While the
motivations and the focus of the presented work
are related to querying the Semantic Web, the main
concepts of the model are general enough to be ap-
plied in other contexts as well.

1 Introduction
Client-server-based query processing is concerned with an in-
teraction between a client and a server with the goal of com-
puting queries—posed on the client-side—over a server-side
dataset. The queries that can be computed in such a setting
depend on server-side and on client-side query processing ca-
pabilities, and so does the space of possible execution plans
for such queries (where different plans may result in different
query execution times and induce different resource require-
ments on the client, on the server, and on the network).

The trade-offs that arise from relying on different
client/server capabilities have recently become a topic of re-
search in the Semantic Web community. This development
can be attributed to the realization that publicly accessible
servers that provide query interfaces with a highly-expressive
query language may easily become overloaded and, as a re-
sult, have availability issues [Buil-Aranda et al., 2013].

To identify alternatives that are more reliable for building
a Semantic Web in which data sources can be queried by
client software, new types of query-based data access inter-
faces have become of interest [Verborgh et al., 2016]. These
interfaces are deliberately limited in the types of queries they
support, which enforces that the computation of more expres-
sive queries has to be performed partially on the client side.

While existing research in this context has focused on ex-
perimental results regarding the trade-offs imposed by these
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interfaces, we have recently embarked on a formal study to
achieve a more fundamental understanding of possible inter-
faces and their trade-offs. To this end, in a recent paper [Har-
tig et al., 2017] we have proposed an abstract machine model
that can be used to capture formally the client-side capabili-
ties and the server-side capabilities in a client-server system.
Based on this model we have shown results that organize sev-
eral combinations of such client and server capabilities into a
lattice related to the classes of queries that can be computed
by the corresponding types of client-server systems. More-
over, we have studied the interplay between several metrics
such as the number of requests sent to the server, and the
bandwidth of communication between client and server.

In this invited summary paper we provide an overview of
this work. More specifically, we first provide some more
background on client-server approaches to query process-
ing in the Semantic Web context. Thereafter, we introduce
our formal model and highlight the key results that we have
shown based on the model. We emphasize that even if some
notions of our model are defined to capture Semantic Web
technologies, the model can easily be adapted to other tech-
nologies (e.g., relational databases).

2 Client-Server Approaches to Query
Data on the Semantic Web

We begin this section by reminding the reader of the main
concepts of the Resource Description Framework (RDF) [Cy-
ganiak et al., 2014] and its query language SPARQL [Har-
ris and Seaborne, 2013], which are fundamental building
blocks of all approaches to query the Semantic Web (includ-
ing client-server approaches, which we describe below).

The RDF data model represents data in the form of triples
of RDF terms where such RDF terms include Uniform Re-
source Identifiers (URIs) and literals (literals may appear only
in the third position of RDF triples). Such an RDF triple may
be understood as a binary predicate where the URI that de-
notes the predicate is in the second position of the triple. A
set of RDF triples is called an RDF graph because it can be
visualized as a graph (with directed, labeled edges).

The RDF query language SPARQL is based on the idea of
graph pattern matching. Hence, the core component of each
SPARQL query is a so-called query pattern. In the simplest
case, such a query pattern is a triple pattern, that is, an RDF



triple that may have variables in any of its three positions.
Multiple triple patterns can be combined into a set, which is
called a basic graph pattern (BGP) and resembles the notion
of a conjunctive query. In addition to such BGPs, several
other features are possible in SPARQL query patterns (e.g.,
UNION, FILTER). The subgraphs of a queried RDF graph
that match such query patterns are used to produce the query
results. Formally, the expected result of any given SPARQL
query is defined based on an evaluation function J·KG that,
given an RDF graph G, takes a SPARQL query pattern and
returns a set (or multiset) of solution mappings, that is, partial
functions that associate variables with RDF terms [Pérez et
al., 2009]. For instance, for a triple pattern tp, the result JtpKG
contains every solution mapping whose domain is the set of
all variables in tp and replacing the variables in tp according
to the mapping produces an RDF triple that is in G.

Given these fundamental concepts, we now describe client-
server approaches that enable clients to query a server-side
RDF graph using SPARQL queries. While all approaches rely
on the HTTP protocol for the communication between the
client and the server, the major technical difference is in the
actual type of HTTP interface that the server exposes.

A prevalent (and standardized) type of such interfaces is
the interface provided by so-called SPARQL endpoints; such
endpoints are Web services that can be called to obtain the
result of executing any given SPARQL query over the server-
side RDF data [Feigenbaum et al., 2013]. While this ap-
proach represents the most simple option from the client per-
spective (because the complete work of processing queries is
performed solely by the server), a SPARQL endpoint server
may easily become overloaded if many client applications
start to access such a server concurrently. In fact, Buil-
Aranda et al. [2013] have shown empirically that many public
SPARQL endpoints on the Web have availability issues.

The other extreme are servers that simply offer a dump of
their dataset for clients to download. In this case, the amount
of query processing work on the server is reduced to a mini-
mum. On the other hand, the drawbacks are that query pro-
cessing on the client can start only after a potentially exten-
sive load phase and the client-side copy of the data may have
to be maintained and kept up-to-date. Moreover, the approach
may cause a lot of unnecessary data transfer if only a fraction
of the data is relevant to the queries processed by the client.

Based on the observation that SPARQL endpoints and data
dumps are two opposite extremes in terms of how the query
processing work is distributed between clients and servers,
Verborgh et al. [2014; 2016] have challenged the Semantic
Web community to study other options that may exist in be-
tween these extremes. To this end, Verborgh et al. have in-
troduced the notion of Linked Data Fragments; this notion
captures the types of query results that can be requested via
a possible data access interface and that can be understood to
represent “fragments” of the server-side dataset.

In addition to their conceptual framework, Verborgh et al.
have also proposed a new type of interface called Triple Pat-
tern Fragments (TPF) interface. Requests that clients can
send to a TPF interface can be arbitrary triple patterns, and
the response to such a request are all the triples in the server-
side RDF graph that match the given triple pattern. Hence, in

contrast to SPARQL endpoints, TPF-based servers are delib-
erately limited in the expressiveness of the requests they sup-
port. Then, executing an arbitrary SPARQL query using such
a TPF server requires a client-side query engine that decom-
poses the query into a series of TPF requests and performs
the other operators of the query based on the data retrieved
by the requests. In comparison to querying a SPARQL end-
point, Verborgh et al. [2014; 2016] show experimentally that
when using the TPF approach, the server load is reduced, the
server response times become more stable, and so does the
overall query throughput for increasing numbers of concur-
rent clients; on the other hand, SPARQL endpoints achieve
a better performance in terms of query execution times (in
particular, for a limited number of concurrent clients).

The proposal of TPF has sparked numerous follow-up re-
search. For instance, aiming to improve the performance
of TPF-based client-server systems, some authors have pro-
posed other TPF-based query execution approaches to be
used by the client-side query engine [Van Herwegen et al.,
2015a; Acosta and Vidal, 2015]. Other authors have started
to propose other new types of interfaces. Most of these pro-
posals extend TPF with additional features based on which
specific operations of the query processing work can be
pushed back to the server (e.g., [Van Herwegen et al., 2015b;
Vander Sande et al., 2015]). A notable example of such
an extension is the Bindings-Restricted TPF (brTPF) inter-
face [Hartig and Buil-Aranda, 2016]. In addition to pure
TPF requests, this interface allows clients to attach a set of
SPARQL solution mappings to any TPF request. The re-
sponse to such a brTPF request is expected to contain RDF
triples from the underlying dataset that do not only match the
given triple pattern (as in the case of TPF), but that are guar-
anteed to contribute in a join with the given solution map-
pings. By using this extension, the execution of joins can be
distributed between client and server by using the well-known
bind join strategy in which the client sends intermediate re-
sults to the server [Haas et al., 1997]. By using this strat-
egy, experiments have shown that a brTPF-based client-server
system can achieve both a significant reduction of network
load and a much higher query throughput when compared to
a TPF-based setup [Hartig and Buil-Aranda, 2016].

In general, any possible data access interface—and its
resulting client-server systems—have their own particular
properties and trade-offs regarding performance, bandwidth
needs, cache effectiveness, etc. The aforementioned research
in this context has produced interesting practical results, but
there have been only few formal tools to show fundamental
results regarding such properties and trade-offs. The main
goal of our recent work was to help fill this gap by develop-
ing solid theoretical foundations for studying and comparing
Linked Data Fragment interfaces [Hartig et al., 2017]. The
remainder of this paper provides a summary of this work.

3 Linked Data Fragment Machine (LDFM)
This section introduces the abstract machine model—called
Linked Data Fragment Machine (LDFM)—that we developed
to capture possible client-server systems that execute user
queries, issued at the client side, over a server-side dataset.
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Figure 1: Illustration of an LDFM (left), and possible state transitions of an LDFM (right)

As a basis for defining LDFMs, we consider three types
of languages: query languages to express the user queries,
server languages to capture the types of requests that the
client may send to the server, and response-combination lan-
guages to express how the responses from the server may be
combined to produce the result of the given user query.

Then, an LDFM M is a multi-tape Turing Machine with
several special features as illustrated in Figure 1 (left). That
is, in addition to multiple ordinary working tapes, M has five
special tapes: a query tape TQ, a data tape TD, a server-
request tape TR, a client tape TC , and an output tape TO.
Tapes TQ and TD are read-only, and TR, TC , and TO are
write-only. Additionally, M has an unbounded sequence
D1, D2, . . . , Dk, . . . of read-only tapes called response con-
tainers, and a counter cM , called the response counter, that
defines the last used response container. Finally, M has ac-
cess to two oracle machines: a server oracleOS , which is as-
sociated with a server language LS , and a client oracle OC ,
associated with a response-combination language LC .

The input to an LDFM is a query, expressed in a query lan-
guage and given in tape TQ, and the queried dataset, given in
the read-only tape TD. All other tapes as well as the response
containers are initially empty, and the counter cM is 0.

Computations of LDFMs are based on four modes: com-
puting the next server request (R), waiting for response (W ),
computing client query (C), and done (F ). In all these modes,
an LDFMM works as a standard Turing Machine that can use
its ordinary working tapes arbitrarily (read/write). However,
special tape TR can be used only when the machine is in mode
R, and tape TC can be used only in mode C. Moreover, tapes
TD and TO can be accessed only by the oracles OS and OC ,
respectively (hence, M cannot access the queried dataset di-
rectly). Regarding the response containers, M is only able to
read from them, and only oracle OS is able to write in them.

Any computation of an LDFM M starts in mode R and
progresses as follows (see Figure 1, right). In mode R,
the machine can construct a server request qR ∈ LS and
write it in tape TR. When done, the machine may change to
mode W, which is a call to oracle OS . The oracle increments
the counter cM , writes into the container DcM the result of
evaluating qR over the dataset in TD, and deletes the con-
tent of tape TR. Next, M changes back to mode R, and the
process may be repeated as described. Alternatively, at any
point when in mode R, the machine may decide to change to
mode C. In this mode, M constructs a response-combination
query qC ∈ LC , writes it in tape TC , and calls oracle OC

by changing to mode F . Then, oracle OC evaluates qC over
data D1, . . . , DcM , and writes the result of this evaluation in
tape TO. At this point the computation terminates. For con-
crete examples of LDFM-based query computations refer to
the original paper [Hartig et al., 2017].

We emphasize that this machine model clearly separates
three of the main tasks done during client-server-based query
processing: (1) the computation that plans and drives the
overall query execution process by making requests to the
server, (2) the computation that the server needs to do in order
to answer requests issued by the client, and (3) the computa-
tion that the client needs to do to create the final output from
the server responses. In our model the latter two tasks are
separated into the oracles OS and OC , respectively, and the
languages LS and LC capture the related capabilities. An
LDFM that is defined to use a particular pair of these lan-
guages, LS and LC , is called an (LC ,LS)-LDFM.

Note that the definition of LDFMs is independent of spe-
cific technologies! Hereafter, to focus on Semantic Web tech-
nologies, we assume that the server-side dataset (given in
tape TD) is an RDF graph, and for any query language LQ

(e.g., SPARQL) and any server language LS , the result of ev-
ery query in LQ or in LS is a set of SPARQL solution map-
pings. Due to this assumption, any response-combination lan-
guage LC is an algebra over such sets of solution mappings.

4 Expressiveness Lattice
This section provides an overview of our results that show
the relationships between different pairs of client and server
capabilities in terms of expressiveness. We begin by defining
the notions of computability and expressiveness of LDFMs.
Definition 1. Let q be a user query, LC be a response-com-
bination language, and LS be a server language. We say that
q is computable under (LC ,LS) if there exists an (LC ,LS)-
LDFM M such that for every RDF graph G, the computation
of M , with q in tape TQ and G in TD, terminates with JqKG
in the output tape TO.
Definition 2. Let L1 and L′

1 be response-combination lan-
guages, and L2 and L′

2 be server languages. We say that
(L′

1,L′
2) is at least as expressive as (L1,L2), denoted by

(L1,L2) �e (L′
1,L′

2), if every query that is computable un-
der (L1,L2) is also computable under (L′

1,L′
2).

We write (L1,L2) ≺e (L′
1,L′

2) if (L1,L2) �e (L′
1,L′

2)
and (L′

1,L′
2) 6�e (L1,L2), and (L1,L2) ≡e (L′

1,L′
2) de-

notes that (L1,L2) �e (L′
1,L′

2) and (L′
1,L′

2) �e (L1,L2).
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Figure 2: Expressiveness lattice for LDFMs

Given these notions, we have shown results that allow us to
establish the expressiveness-related lattice illustrated in Fig-
ure 2. For the server languages and the response-combina-
tion languages described in the following, this lattice provides
a full picture of how most combinations of these languages
compare in terms of expressiveness (the higher up in the lat-
tice a language combination is, the more expressive it is).

The response-combination languages we have focused on
are almost all the algebras (over sets of solution mappings)
that can be constructed by using some of the following
operators: join (on), union (∪), left join (on), and projec-
tion (π) [Pérez et al., 2009]. Note that the empty operator
set (∅) also denotes a response-combination language. This
language can be used only to simply select the set of solution
mappings from one of the response containers.

The server languages considered are the following:
• CORESPARQL is the core fragment of SPARQL with

triple patterns, AND, OPT, UNION, FILTER, and SELECT.
• BGP is the basic graph pattern fragment of SPARQL.
• TPF is the language composed of queries that are a single

triple pattern. Hence, this captures TPF servers.
• BRTPF is the language composed of queries of the form

(tp,Ω), where tp is a triple pattern and Ω is a set of
solution mappings; additionally, a triple pattern is also a
BRTPF query. This captures the brTPF interface.

We emphasize that some of the equivalences and separations
in the expressiveness lattice (Figure 2) do not necessarily fol-
low from standard expressiveness results in the query lan-
guage literature. In particular, the lattice highlights the high
expressive power of using the brTPF interface.

5 Additional Complexity Measures
While the expressiveness results are a necessary starting point
to formally compare different combinations of client/server
capabilities, from a practical point of view one would also
want to compare the resources that have to be payed when
using one data access interface or another. More specifically,
if two combinations of client/server capabilities are equally
expressive, a question is: are we paying an additional cost
when using one or the other? Or more interestingly, is any of
the two strictly better than the other in terms of some of the
resources needed to answer queries? In the remainder of this
paper, we highlight that our proposed framework is suitable
to also analyze such aspects of client-server systems.

First, another classical complexity measure is the (compu-
tational) complexity of query evaluation. In the original pa-
per [Hartig et al., 2017] we have adopted this measure (and
corresponding results [Schmidt et al., 2010]) to derive two
more lattices that provide a comparison of LDFM settings in
terms of the complexity of the query evaluation problem for
the server and response-combination languages, respectively.

Perhaps more interestingly, we also have proposed new
complexity measures; that is, we have defined request com-
plexity and transfer complexity of queries under a given pair
(LC ,LS) based on the idea that the number of requests of an
LDFM computation is the final value of counter cM and the
amount of data transferred is the value |D1| + |D2| + · · · +
|DcM |. Based on these complexity measures, we define the
following notions to compare combinations of client/server
capabilities w.r.t. the resources needed to compute queries.
Definition 3. Let L1,L′

1 be response-combination languages
and L2,L′

2 be server languages. Then, we say that (L1,L2)
is at most as request demanding as (L′

1,L′
2), denoted by

(L1,L2) �r (L′
1,L′

2), if the following condition holds: For
every function f and every query q that is computable under
both (L1,L2) and (L′

1,L′
2), if q has request complexity at

most f under (L′
1,L′

2), then q has request complexity at most
f under (L1,L2). We similarly define the notion of being at
most as data-transfer demanding and denote it using �t.

For c ∈ {r, t} we have defined ≺c and ≡c from �c as
usual. Then, for ({on}, TPF), ({on},BGP), and (∅,BGP)
(which all have the same expressive power; cf. Figure 2) we
have shown that ({on},BGP) ≡r (∅,BGP) ≺r ({on}, TPF)
and ({on},BGP) ≺t ({on}, TPF). Moreover, ({on}, TPF) and
(∅,BGP) are not comparable in terms of �t.

As another result, for c ∈ {r, t} we also have shown that
({∪,on,on, π}, BRTPF) ≺c ({∪,on}, BRTPF). This result in-
dicates that even though ({∪,on}, BRTPF) is very expressive
(cf. Figure 2), one may need to pay an extra overhead in terms
of both the transfer and the request complexity compared to a
setting with a richer response-combination language.

These results illustrate the usefulness of our framework to
formally compare different combinations of client and server
capabilities in terms of fine-grain complexity measures. As
future work, we plan to cover more such combinations, as
well as additional complexity measures.
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