
Defining Schemas for Property Graphs
by using the GraphQL Schema Definition Language

Olaf Hartig
Linköping University
olaf.hartig@liu.se

Jan Hidders

hidders@gmail.com

ABSTRACT
GraphQL is a highly popular new approach to build Web APIs. An
important component of this approach is the GraphQL schema
definition language (SDL). The original purpose of this language is
to define a so-called GraphQL schema that specifies the types of
objects that can be queried when accessing a specific GraphQLWeb
API. This paper focuses on the question: Can we repurpose this
language to define schemas for graph databases that are based on
the Property Graph model? This question is relevant because there
does not exist a commonly adopted approach to define schemas for
Property Graphs, and because the form in which GraphQL APIs
represent their underlying data sources is very similar to the Prop-
erty Graph model. To answer the question we propose an approach
to adopt the GraphQL SDL for Property Graph schemas. We define
this approach formally and show its fundamental properties.
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1 INTRODUCTION
While graph database systems are becoming increasingly popu-
lar [2], their range of use cases broadens and new application re-
quirements emerge. One of these requirements is the option to spec-
ify rigid forms of logical schemas that define exactly how a valid
instance of a graph database has to look like and what constraints it
has to satisfy. In the context of RDF-based graph databases, this de-
velopment has led to the definition of the SHACL standard [14] and
the Shape Expressions Language [16]. In contrast, in the context
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of the other prevalent form of graph databases, namely Property
Graphs, such commonly agreed-upon approaches to define schemas
do not yet exist. Motivated by the question of how this gap may be
filled, we have looked at GraphQL [9], which is a new approach
to building Web-based data access APIs that represent an underly-
ing data source in a Property Graph-like form [12]. What makes
GraphQL interesting in this context is that every GraphQL API
is based on some kind of schema and for defining these schemas,
the GraphQL approach introduces a developer-friendly language.
Consequently, we aim to answer the following research question:

Can the GraphQL Schema Definition Language (SDL) be

repurposed to also define schemas for Property Graphs?

To address this question we make the following contributions.
(1) We propose an approach to adopt the GraphQL SDL for

Property Graph schemas. Section 3 describes this approach
informally, and Section 5 provides a formal definition.

(2) We analyze the approach formally and show the follow-
ing fundamental properties (cf. Section 6). The validation
problem for the approach is in AC0, which means that the
computational complexity of verifying whether a Property
Graph conforms to a schema is low. However, the approach
also has a downside: it allows for schemas that are unsatisfi-
able (i.e., there can be no Property Graph that conforms to
such an unsatisfiable schema). We show that the problem of
checking the satisfiability of schemas is NP-hard and, as an
upper bound, we show that the problem is in PSPACE.

(3) As a formal basis of the aforementioned contributions, and
also for further work on GraphQL schemas and their under-
lying type system, we provide a concise formalization of the
notion of schemas captured by the GraphQL SDL (Section 4).

To the best of our knowledge, this paper is the first to provide
a comprehensive formal foundation for Property Graph schemas.
Before we present our contributions, we discuss relevant existing
work that is related to our work in this paper, which includes
providing an overview of the main features of GraphQL schemas.

2 RELATEDWORK
2.1 Schemas for Property Graphs
We first recall that, informally, a Property Graph is a directed multi-
graph in which every node and every edge may be assigned a label
as well as a set of so-called properties, where each property consists
of a name and a value [17]. There are several proposals to define the
notion of a Property Graph formally (e.g., [11], [4], [3], [7]). For our
work in this paper we adopt the following definition of Angles et
al. [4], which asssumes three infinite countable sets: Labels (labels),
Props (property names), and Values (property values).
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Definition 2.1 (Property Graph [4]). A Property Graph is a tu-
ple (V ,E, ρ, λ,σ ) with the following five components:

• V is a finite set of vertices (or nodes);
• E is a finite set of edges such that V ∩ E = ∅;
• ρ : E → (V ×V ) is a total function;
• λ : (V ∪ E) → Labels is a total function;
• σ : (V ∪ E) × Props 7→ Values is a partial function.

When it comes to (logical) schemas for Property Graphs, there
is no approach that is commonly agreed upon. However, many
database management systems for Property Graphs support some
proprietary form of schemas. In some systems, users can spec-
ify the schema using a data definition language such as Neo4j’s
Cypher [15, Chapter 5] and TigerGraph’s GSQL [19]; in other sys-
tems, the schema is specified using the system-specific API (e.g.,
Sparksee [18, Section 3.4], JanusGraph [13, Chapter 5]). Typical fea-
tures are notions of node types and edge types, as well as property
types that are associated with a node type or with an edge type;
additionally, the systems support different kinds of constraints. A
detailed survey of the exact features supported by each system is
outside the scope of this paper. In fact, a thorough discussion and
comparison of these features may hardly be possible because there
does not exist any publication that provides a formal definition of
any of the system-specific notions of schema and schema validation.
One of our contributions in this paper is to introduce such formal
definitions for the GraphQL schema definition language.

To the best of our knowledge, the only work on Property Graph
schemas in the research literature is by Angles [3]. The author
provides a formal definition of some form of a Property Graph
schema. This definition introduces a notion of node types and a
notion of edge types, as well as constraints that allow users to
specify (i) what properties can be used for each node type and for
each edge type, and (ii) what types of edges can be used between
any given pair of node types. Additionally, Angles outlines other
possible kinds of constraints and, for some of them, describes how
they may be incorporated into the given definition. In particular,
these constraints consider mandatory properties, mandatory edges,
uniqueness of properties, and cardinality constraints. All these
features are also covered by the approach proposed in this paper.
Like Angles, we define our approach formally. However, in contrast
to Angles, we additionally show fundamental properties of our
approach. Another difference to Angles’ work is that our approach
is grounded in a concrete language that developers can use.

2.2 GraphQL Schemas
Despite the name, GraphQL schemas are not a form of schemas in
the traditional sense. That is, such a schema does not specify what
the instances of a particular database may look like and what con-
straints have to be enforced for these database instances. Instead, a
GraphQL schema represents more a form of vocabulary supported
by aGraphQLWebAPI.More specifically, the schema of such anAPI
specifies the types of objects for which the API has data and what
kind of data it has for these objects. The GraphQL schema definition
language (SDL) for defining GraphQL schemas has been officially in-
troduced in the June 2018 Edition of the GraphQL specification [9].

In this paper we assume familiarity with the GraphQL SDL. For
readers who are not familiar with this language we refer to the
Appendix in which we illustrate the main features the language.

GraphQL schemas—and, in fact, GraphQL in general—have not
attracted much attention in the research community so far. The
only work related to our work in this paper is the work by Har-
tig and Pérez who study the semantics and the complexity of the
GraphQL query language [12]. As one of the foundations of their
work, the authors provide a formal definition of the notion of a
GraphQL schema. We have used this definition as a starting point
for our definitions in Section 4. However, we had to make several
important extensions because Hartig and Pérez’ definition covers
only a limited subset of the features of the GraphQL SDL.

3 DESCRIPTION OF THE APPROACH
This section describes the proposed approach informally. That is,
we outline our general idea of what it means for a Property Graph to
conform to a schema defined in the GraphQL SDL and we introduce
how the various features of the SDL are interpreted in this context.

3.1 Specifying Types of Nodes
using Object Type Definitions

The main type of elements defined in a GraphQL schema are object
types that consist of a name and a list of field definitions. If used for
Property Graphs, we propose that object types define the types of
nodes that a schema-conformant Property Graph may contain. That
is, for every node in the graph, the label of the node must be the
name of one of the object types in the schema. We call this object
type the type of the node or we say that the node is of this type.

Example 3.1. Consider the following example schema. Property
Graphs that conform to it can contain only two types of nodes:
nodes with the label "UserSession" and nodes with the label "User".

1 type UserSession {
2 id: ID! @required
3 user: User! @required
4 startTime: Time! @required
5 endTime: Time!
6 }

7 type User {
8 id: ID! @required
9 login: String! @required
10 nicknames: [String!]!
11 }
12 scalar Time

While we use the name of an object type as the label of each node
that is of this type, the field definitions of the object type specify
what properties and what outgoing edges these nodes may have. To
this end, we distinguish two types of field definitions: (i) attribute
definitions are field definitions in which the type of the possible field
values is a scalar type (e.g., Int, Float, String), an enumeration
type, or a list type that wraps a scalar type or an enumeration type,
and (ii) relationship definitions are field definitions in which the
type is an object type or a list type wrapping an object type.

Example 3.2. The object type UserSession (cf. Example 3.1)
contains one relationship definition (the field user) and three at-
tribute definitions (fields id, startTime, and endTime). The field
definitions in the type User all are attribute definitions (notice that
String and ID are built-in scalar types in the GraphQL DSL).



3.2 Specifying Node Properties
using Field Definitions

Every field definition that is an attribute definition specifies that
the corresponding nodes may have a property whose name is the
name of the field and whose values must be of a type that depends
on the type given in that field definition. Hence, if the type in the
field definition is a scalar type, the property value must be of that
type; if, on the other hand, the type in the field definition is an
enumeration type, the property value must be one of the values of
that enumeration type. If the type in the field definition is a list type
that wraps a scalar type or an enumeration type, then the property
value must be an array of values of the wrapped type.

For some properties, we may want to specify that they are re-
quired for all nodes of the corresponding type. To capture this kind
of constraint we use the notion of directives that the GraphQL SDL
introduces as a form of annotations that can be added to field defi-
nitions (and to other elements in a schema). That is, we introduce
the directive @required for the aforementioned purpose.

Example 3.3. Given the schema of Example 3.1, every node with
the label "User" may have two or three properties. That is, two prop-
erties are mandatory and they must have the name "id" and "login",
respectively. The third property is optional and, if used, its name
must be "nicknames". The value of the "id" property must be some
form of an identifier, the value of "login" must be a (single) string,
and the value of "nicknames" must be an array of strings. Nodes
with the label "UserSession" must have the properties "id" and "start-
Time" and, additionally, may have the property "endTime". Notice
that the field definition of the field called user does not define a
property because it is not an attribute definition (cf. Example 3.2).

As another form of constraints that involves node properties, we
define a notion of key constraints. To this end, we introduce the
directive @key that can be added to the definition of an object type.
Each such @key directive must contain an argument names fields
that lists the names of all properties that belong to the key.

Example 3.4. Consider again the schema of Example 3.1. To spec-
ify that the (mandatory) "id" property of all "User" nodes is a key (i.e.,
all nodes of type "User" must have a unique value for this property)
we have to modify line 7 of the schema as follows.

7 type User @key(fields:["id"]) {

Alternatively, the "login" property may also be used as a key, which
we may indicate by extending line 7 further:

7 type User @key(fields:["id"]) @key(fields:["login"]) {

3.3 Specifying Outgoing Edges
using Field Definitions

Every field definition that is a relationship definition specifies that
the corresponding nodes may have outgoing edges whose label is
the name of the field and whose target node is of the type that is
the object type given in that field definition. If the type in the field
definition is a list type (that wraps an object type), then a node may
have multiple such outgoing edges; otherwise, the nodes must not
have more than one such outgoing edge. Hence, the latter case (no

list type) presents a form of cardinality constraints for the relation-
ship type that is captured by the field definition. Additionally, it is
also possible to specify a form of participation constraints: If field
definition contains the @required directive, then it is mandatory
for nodes to have such an outgoing edge; otherwise, it is optional.

Example 3.5. In a Property Graph that conforms to the schema
of Example 3.1, every "UserSession" node must have exactly one
outgoing edge. The label of this edge must be "user" and the edge
must point to a node with the label "User".

Example 3.6. The following schema illustrates other possible
combinations of the aforementioned constraints on outgoing edges.

1 type Author {
2 favoriteBook:Book
3 relatedAuthor:[Author]
4 }

5 type Book {
6 title:String!
7 author:[Author] @required
8 }

Based on this schema, every "Author" node may have at most one
"favoriteBook" edge to a "Book" node, but it is not mandatory for
"Author" nodes to have such an edge. Additionally, every "Author"
node may have an arbitrary number of "relatedAuthor" edges to
"Author" nodes (including none). Hence, there may also be "Author"
nodes that do not have any outgoing edge. In contrast, every "Book"
node must have at least one outgoing edge, but may also have more,
all of which must be labeled "author" and point to an "Author" node.

In the cases in which a node may have multiple outgoing edges
of the same type (i.e., with the same label), we may want to require
that each of these edges must point to a different target node. To cap-
ture this type of constraints we introduce the directive @distinct.
Additionally, we introduce the directive @noloops that can be used
to specify that the target node of edges must not be the same as
their respective source node; i.e., they must point to a target node
that is different from the source node. Apparently, such a no-loops
constraint makes sense only for edges for which source and target
nodes may be of the same type.

Example 3.7. Wemay extend line 7 of the schema in Example 3.6
by adding the @distinct directive as follows.

7 author: [Author] @required @distinct

As a consequence of this modification, for every "Book" node, each
of its outgoing "author" edges must point to a different "Author"
node. The same type of constraint is reasonable for the "relatedAu-
thor" edges (line 3). Additionally, we may want to specify that a
"relatedAuthor" edge must not point back to the same "Author"
node, for which we my use the @noloops directive as follows.

3 relatedAuthor: [Author] @distinct @noloops

Notice that the directive @distinct is symmetric; that is, it rep-
resents a constraint not only for the source node of an edge but
also for the target node. For instance, the @distinct constraint on
the "author" edges (cf. Example 3.7) does not only mean that for
every "Book" node, all of its outgoing "author" edges must point
to different "Author" nodes, but also that for an "Author" node, its
incoming "author" edges must all come from different "Book" nodes.

There are further constraints with a focus on the target nodes of
edges: On the one hand, we may want to require that for some type



of edges, any possible target node can have at most one incoming
edge of this type. We introduce the directive @uniqueForTarget
to represent this constraint. On the other hand, we may also want
to require that for some type of edges, any possible target node
must have at least one incoming edge of this type. To capture this
constraint we introduce the directive @requiredForTarget.

Example 3.8. Consider the following extension of the schema in
Example 3.6. Given this extension, we have the following additional
constraints for "Book" nodes: Every "Book" node may have at most
one incoming "contains" edge (which are required outgoing edges
for "BookSeries" nodes), but there may be "Book" nodes that do
not have any such incoming edge. Additionally, every "Book" node
must have exactly one incoming "published" edge.

9 type BookSeries {
10 contains:[Book]
11 @required
12 @uniqueForTarget
13 }

14 type Publisher {
15 published:[Book]
16 @uniqueForTarget
17 @requiredForTarget
18 }

We emphasize that the types of constraints that we have in-
troduced can be used to capture any combination of cardinality
restrictions that is possible for binary relationships. The following
table illustrates all these combinations for an example relationship
labeled "rel" from nodes of type "A" to nodes of type "B".

If "rel" is a then the definition of the type A contains:
1:1 relationship, rel: B @uniqueForTarget

1:N relationship, rel: B

N :1 relationship, rel: [B] @uniqueForTarget

N :M relationship, rel: [B]

3.4 Specifying Edges with Multiple Types of
Nodes based on Interfaces or Union Types

In addition to object types, the GraphQL SDL introduces the notion
of interface types and union types. While we do not use these
notions as types that can be explicitly assigned to nodes in Property
Graphs, we propose to use these notions to capture cases in which
some type of edges may have multiple types of target nodes.

Example 3.9. According to the following example schema, every
"Person" node may have an outgoing edge labeled "favoriteFood"
that points either to a "Pizza" node or to a "Pasta" node.

1 type Person {
2 name: String!
3 favoriteFood: Food
4 }
5

6 union Food = Pizza | Pasta
7

8 type Pizza {
9 name: String!
10 toppings: [String!]!
11 }
12 type Pasta {
13 name: String!
14 }

Example 3.10. Consider the following example schema. It cap-
tures exactly the same restrictions on Property Graphs as are cap-
tured by the schema in the previous example.

1 type Person {
2 name: String!
3 favoriteFood: Food
4 }
5 interface Food {
6 name: String!
7 }

8 type Pizza implements Food {
9 name: String!
10 toppings: [String!]!
11 }
12 type Pasta implements Food {
13 name: String!
14 }

As the two examples illustrate, in the context of SDL-based
schema definitions for Property Graphs, using interface types or
union types are two different options that serve the exact same
purpose. Our proposal allows for both options to give users more
flexibility if they aim to use their schema also as a basis for devel-
oping a GraphQL API on top of their Property Graph.

While using union types or interface types as described above
focuses on the possible target nodes of edges, our proposed ap-
proach also covers cases in which some type of edges may have
multiple types of source nodes. To this end, the corresponding rela-
tionship definition simply needs to be repeated in every object type
definition of all types of nodes that may have such outgoing edges.

Example 3.11. The following extension of the previous example
schema allows "Person" nodes to have incoming "owner" edges
from "Car" nodes as well as from "Motorcycle" nodes.

15 type Car {
16 brand: String!
17 owner: Person
18 }

19 type Motorcycle {
20 brand: String!
21 owner: Person
22 }

3.5 Specifying Edge Properties
using Field Argument Definitions

An important feature of Property Graphs that we have not covered
so far are edge properties. To specify what properties an edge may
have we use the definition of field arguments that can be provided
for every field definition. That is, every field argument defined in a
relationship field definition specifies that the corresponding edge
may have a property whose name is the name of the field argument
and whose value must be of the type mentioned in the definition
of the field argument. Hence, field argument definitions that can
be used in this way must have a scalar type, an enumeration type,
or a list type that wraps a scalar or an enumeration type.

Example 3.12. Wemaymodify line 3 in our initial example schema
about user sessions (cf. Example 3.1) as follows.

3 user(certainty:Float! comment:String): User! @required

Now, every "user" edge must have a “certainty” property with a
floating point number as value. Additionally, such an edge may
have an optional "comment" property with a string value.

As the previous example demonstrates, if the type in the field
argument definition is marked as non-nullable, then the specified
edge property is mandatory. If the type is a list type (wrapping a
scalar type or and enumeration type), then the value of the specified
edge property must be an array of values of the wrapped type.

3.6 Additional Remarks
While our proposal leverages and repurposes most of the features of
the GraphQL SDL, some features cannot be meaningfully adapted



when it comes to defining schemas for Property Graphs. Conse-
quently, we have ignored these features for our proposed approach.
If a schema definition uses such a feature that is not covered by our
approach, this part of the schema definition is simply ignored when
checking whether a Property Graph satisfies the schema definition.

For instance, when adopting the definition of field arguments as a
means to specify what properties an edge may have, we deliberately
consider only the field argument definitions whose type is either a
scalar type, an enumeration type, or a list type that wraps one of
the former. Hence, we ignore field argument definitions in which
the type of possible values is defined to be a complex input type.
Such field argument definitions are not suitable to specify potential
edge properties because the value of any edge property can only
be a simple atomic value or a list of such values [7].

A related example are field arguments in attribute definitions. Re-
call that attribute definitions are the field definitions that, according
to our proposal, can be used to specify what properties particular
nodes may have. Since in the Property Graph model the name (or
the value) of a node property cannot have additional arguments
associated with it, field arguments in attribute definitions cannot be
meaningfully used for our proposal. Hence, an attribute definition
in an SDL-based schema definition for Property Graphs should not
contain field arguments (and if it does, we ignore these arguments).

A last example of SDL features that are not meaningful for Prop-
erty Graph schemas are the root operation types called Query,
Mutation, and Subscription. These types specify the objects that
have to be used as entry points in requests to a GraphQL API. Since
the purpose of our proposal is to use the SDL to define schemas for
Property Graphs (and not to define schemas for GraphQL APIs over
Property Graphs), root types are not needed in our context. No-
tice, however, that by omitting root operation types, the SDL-based
Property Graph schemas created based on our proposal are not
complete GraphQL schemas (as used for GraphQL APIs) because at
least the query type is mandatory in such GraphQL API schemas.

Nonetheless, even if it is not the primary purpose of the schemas
defined based on our proposed approach, it seems like a natural
next step to also use them as a basis for developing GraphQL APIs to
access Property Graphs. To this end, such schemas may be extended
into actual GraphQL schemas as required for creating GraphQL
APIs. From a technical perspective, the only thing that needs to be
added in this case is the query type, and perhaps also the mutation
type for providing write access. However, for practical purposes,
further elements will have to be added when extending an SDL-
based Property Graph schema into a GraphQL API schema.

In particular, it may be useful for GraphQL APIs over Property
Graphs to support queries with which the directed edges in the
graph can also be traversed in their opposite directions. Such a
bidirectional traversal is not possible with a schema defined based
on our approach. The reason for this limitation is that our SDL-
based Property Graph schemas specify potential edges in the object
types for the nodes for which the edges are outgoing. Hence, the
object types in the schema that specify the potential target nodes
do not contain any mention of the incoming edges. We emphasize
that specifying every type of edges only once is sufficient for the
purpose of defining a Property Graph schema, but it is not sufficient
for supporting bidirectional traversal in GraphQL queries. We also
emphasize that in query languages that are explicitly designed for

Property Graphs (such as Gremlin and Cypher) it is a native feature
that edges can be traversed both ways. In contrast, to enable bidi-
rectional traversal in GraphQL queries, the schema of the GraphQL
API has to explicitly mention potential edges twice: once from the
perspective of the source nodes and once For this purpose, an ex-
tended GraphQL schema has to explicitly mention potential edges
also from the perspective of the target nodes. Although we believe
that it is not difficult to address this limitation when extending an
SDL-based Property Graph schema into a GraphQL API schema, we
are planning to complement our proposed approach with guidelines
on how to develop such an extension in a principled manner.

4 FORMALIZATION OF GRAPHQL SCHEMAS
To define our approach formally we first need to formalize the
notion of GraphQL schemas. To this end, we adopt Hartig and Pérez’
formalization approach [12] and extend it by also capturing non-
null types, the semantics of wrapping types, and directives (which
have been ignored by the original authors). This section presents
this extended definition. As done by the original authors, for each
concept that the definition captures, we refer to corresponding
section of the GraphQL specification that introduces the concept.

4.1 GraphQL Type System
We consider the following pairwise disjoint, countably infinite
sets: Types (type names, §3.4 [9]), Fields (field names, §3.6 [9]),
Arguments (argument names, §3.6.1 [9]), and Directives (directive
names, §3.13 [9]). Moreover, there exists a set Scalars (scalar type
names, §3.5 [9])1 that is a subset of Types, and there are five built-in
scalar types: Int (§3.5.1 [9]), Float (§3.5.2 [9]), String (§3.5.3 [9]),
Boolean (§3.5.4 [9]), and ID (§3.5.5 [9]). We also consider a set
Vals (scalar values) and a function values : Scalars → 2Vals
that assigns a set of values to every scalar type. We assume that
Types ∪ Fields ∪ Arguments ∪ Directives ⊂ values(String).

In addition to the named types in Types, the GraphQL SDL
introduces two kinds of so-called wrapping types that are created
based on the types in Types (§3.4.1 [9]). One kind of wrapping
types are non-null types (§3.12 [9]); given a type t, we write t! to
denote the non-null type that wraps t. The other kind of wrapping
types are list types (§3.11 [9]); we write [t] to denote the list type
constructed from a type t, where t may be in Types or it may be
a non-null type nt! that wraps a named type nt ∈ Types. A list
type [t] may also be wrapped as a non-null type [t]! (§3.12.1 [9]).
Hence, by combining these definitions, the following four types
can be formed by wrapping a named type: t!, [t], [t!], and [t!]!.
Hereafter, for any subset X ⊆ Types we let WX denote the set of all
the types that can formed by wrapping the types in X .

To refer to the underlying named types of wrapping types we
introduce the function basetype which we define recursively as
follows. If t ∈ Types, then basetype(t) = t; if t is tt! or [tt] such
that tt ∈ Types, then basetype(t) = tt; if t is [tt] such that tt is
a non-null type, then basetype(t) = basetype(tt); finally, if t is tt!

such that tt is a list type, then basetype(t) = basetype(tt).
The semantics of wrapped scalar types is defined by generalizing

the function values to valuesW for types in Scalars ∪ WScalars. To

1For the sake of simplicity, we assume that Scalars includes the enum types that are
treated separately in the GraphQL specification (cf. §3.9 [9]).



this end, we assume the existence of a special value null that is not
in Vals. Then, for all types t ∈ Scalars ∪ WScalars, the function
valuesW is defined recursively as follows:

(1) if t ∈ Scalars, then valuesW (t) = values(t) ∪ {null};
(2) if t is tt!, then valuesW (t) = valuesW (tt) \ {null};
(3) if t is [tt], then valuesW (t) = L (valuesW (tt))∪{null} where
L (X ) is the set of all finite lists with elements from the setX .

Notice that, by recursion, this definition also captures the cases
valuesW ([t]!), valuesW ([t!]), and valuesW ([t!]!).

4.2 GraphQL Schema
GraphQL schemas are defined over finite subsets of the five afore-
mentioned sets. Hence, we assume five finite sets F ⊂ Fields,
A ⊂ Arguments, T ⊂ Types, S ⊂ Scalars, and D ⊂ Directives,
where T is the disjoint union of OT (object types, §3.6 [9]), IT (inter-
face types, §3.7 [9]), UT (union types, §3.8 [9]) and S. We now have
everything necessary to define the notion of a GraphQL schema.

Definition 4.1 (GraphQL schema). A GraphQL schema S over
(F, A, T, S, D) is composed of the following assignments:
• typeS = type

F
S
∪ type

AF
S
∪ type

AD
S

where
– type

F
S

: (OT ∪ IT) × F 7→ T ∪ WT assigns a type to every
field that is defined for an object type or an interface type,

– type
AF
S

: dom(typeF
S
) × A 7→ S∪ WS assigns a type to every

argument of fields that are defined for a type, and
– type

AD
S

: D × A 7→ S ∪ WS assigns a type to every argument
that is defined for a type of directives;

• unionS : UT → 2OT assigns a nonempty set of object types
to every union type;
• implementationS : IT → 2OT assigns a set of object types to
every interface type;
• directivesS = directives

T
S
∪ directives

F
S
∪ directives

AF
S

where
– directives

T
S

: T→ 2D×AV assigns a set of pairs (d, argvals) ∈
D×AV to every type, where the setAV consists of all possi-
ble partial functions argvals : A 7→

⋃
st∈S∪WS valuesW (st),

– directives
F
S

: dom(typeF
S
) → 2D×AV assigns a set of pairs

(d, argvals) ∈ D ×AV to every field in a type, and
– directives

AF
S

: dom(typeAF
S
) → 2D×AV assigns a set of pairs

(d, argvals) ∈ D ×AV to every field argument in a type.

Example 4.2. The schema in Example 3.9 is captured formally
by the following schema S over the following sets (F, A, T, S, D):
• F = {name, favoriteFood, toppings},
A = ∅,
T = OT ∪ IT ∪ UT ∪ S where
– OT = {Person, Pizza, Pasta},
– IT = ∅,
– UT = {Food},
S = {String},
D = ∅;
• type

F
S
= { (Person, name) 7→ String!,

(Person, favoriteFood) 7→ Food,
(Pizza, name) 7→ String!,
(Pizza, topppings) 7→ [String!]!,
(Pasta, name) 7→ String! };

• type
AF
S
= ∅; typeAD

S
= ∅;

• unionS = { Food 7→ {Pizza, Pasta} };
• implementationS = ∅;
• directivesS = ∅.

By Definition 4.1, it is captured implicitly which fields a certain
type may have (by letting typeS be defined for the relevant combi-
nation of type and field). To make this explicit for both fields and
arguments, we introduce three helper functions. Given a GraphQL
schema S over (F, A, T, S, D), for every t ∈ OT ∪ IT we define

fieldsS (t) = {f ∈ F | (t, f) ∈ dom(typeF
S
)},

and for every f ∈ fieldsS (t) we define

argsS (t, f) = {a ∈ A | ((t, f), a) ∈ dom(typeAF
S
)}.

Additionally, we overload argsS , and define for every d ∈ D,

argsS (d) = {a ∈ A | (d, a) ∈ dom(typeAD
S
)}.

To avoid an overly complex formalization, our definition of a
GraphQL schema does not capture the additional notion of input
types (cf. §3.10 [9]). Moreover, since we are interested in using these
schemas for Property Graphs and not for GraphQL APIs, we do
not explicitly consider root operation types (e.g., query; §3.3 [9]).
However, we capture the concept of interfaces and their implemen-
tations (cf. §3.7 [9]) with the following notion of consistency.

4.3 Consistency of GraphQL Schemas
Informally, a GraphQL schema is consistent if (i) every directive in
the schema uses exactly the arguments as defined for its type and
(ii) every object type that implements an interface type contains at
least all the fields that the interface type contains. To define schema
consistency formally, we need to introduce the notion of a subtype
relation ⊑S given a schema S, which is defined as the smallest
relation over T ∪ WT that satisfies the following rules:

(1) t ⊑S t
(2)

t ∈ implementationS (s)

t ⊑S s
(3)

t ∈ unionS (s)

t ⊑S s

(4)
t ⊑S s

[t] ⊑S [s]
(5)

t ⊑S s

t ⊑S [s]
(6)

t ⊑S s

t! ⊑S s
(7)

t ⊑S s

t! ⊑S s!

Now we are ready to define schema consistency:

Definition 4.3 (Interface Consistency). AGraphQL schemaS over
(F, A, T, S, D) is interface consistent if for each interface type it ∈ IT,
every (implementing) object type ot ∈ implementationS (it), and
every field f ∈ fieldsS (it), it holds that

(1) f ∈ fieldsS (ot) and typeS (f, ot) ⊑S typeS (f, it),
(2) for every a ∈ argsS (f, it), we have that a ∈ argsS (f, ot)

and type
AF
S
(a, (f, it)) = type

AF
S
(a, (f, ot)), and

(3) for every a ∈ argsS (f, ot) for which a < argsS (f, it), it
holds that typeAF

S
(a, (f, ot)) is not a non-null type, i.e., it is

not of the form t!.

Definition 4.4 (Directives Consistency). A GraphQL schema S
over (F, A, T, S, D) is called directives consistent if for every pair
(d, argvals) ∈ D × AV that is in at least one of the sets assigned
by directivesS it holds that



(1) for every (d, a) ∈ dom(typeAD
S
) for which type

AD
S
(d, a) is a

non-null type, we have that a ∈ dom(argvals), and
(2) argvals(a) ∈ valuesW (typeADS (d, a)) for all a ∈ dom(argvals).

Definition 4.5 (Consistency). A schema S over (F, A, T, S, D) is
consistent if S is interface consistent and directives consistent.

We assume that all GraphQL schemas in this paper are consistent.
Moreover, unless stated otherwise, we assume that D contains the di-
rectives @distinct, @noLoops, @required, @requiredForTarget,
@uniqueForTarget and @key, and that their types are defined by
type

AD
S

such that they have no arguments, except for @key for which
we have that typeAD

S
(@key, fields) = [String!]!.

5 DEFINITION OF THE APPROACH
In this section we will define what it means for a property graph
to satisfy a schema. This is split into three stages. First, we intro-
duce weak satisfaction that captures that elements of the property
graph that are assigned to certain types in the schema, satisfy the
requirements of those types. Second, we define directives satisfac-
tion that captures that all directives as satisfied. Finally, we present
strong satisfaction that combines the previous two and adds that all
elements in the property graph must be assigned to at least one
declaration in the schema.

For our approach we assume that GraphQL type names and field
names can be used as labels in Property Graphs; that is, we assume
that Types ⊆ Labels and Fields ⊆ Labels. Similarly, field names
and argument names of the GraphQL SDL can be used as property
names in Property Graphs, and GraphQL scalar values can be used
as property values; i.e., Fields ⊆ Props, Arguments ⊆ Props, and
Vals ⊆ Values (note that the sets Labels, Props, and Values have
been introduced in Section 2.1).

Definition 5.1 (Weak schema satisfaction). We say that a Property
GraphG = (V ,E, ρ, λ,σ ) weakly satisfies a GraphQL schemaS over
(F, A, T, S, D) if the following holds:
WS1 (Node properties must be of the required type): For all
(v, f) ∈ dom(σ ) such that v ∈ V , f ∈ fieldsS (λ(v )), and t =

type
F
S
(λ(v ), f) ∈ S ∪ WS, it holds that σ (v, f) ∈ valuesW (t).

WS2 (Edge properties must be of the required type): For all
(e, a) ∈ dom(σ ) s.t. e ∈ E, with (v1,v2) = ρ (e ), f = (λ(v1), λ(e )),
and a ∈ argsS ( f ), it holds that σ (e, a) ∈ valuesW (typeAFS ( f , a)).
WS3 (Target nodes must be of the required type): For every
e ∈ E with ρ (e ) = (v1,v2) and f = (λ(v1), λ(e )) ∈ dom(typeF

S
), it

holds that λ(v2) ⊑S basetype(typeF
S
( f )).

WS4 (Non-list fields contain at most one edge): For all edges
e1, e2 ∈ E with ρ (e1) = (v1,v2), ρ (e2) = (v1,v3), λ(e1)=λ(e2)=f,
and type

F
S
(λ(v1), f) is not a list type or a list type wrapped in

non-null type, it holds that e1 = e2.

Definition 5.2 (Directives satisfaction). We say that a Property
Graph G = (V ,E, ρ, λ,σ ) satisfies the directives a GraphQL schema
S over (F, A, T, S, D) if the following holds:
DS1 (Edges identified by nodes and label): If
(@distinct, ∅) ∈ directivesS (t, f), then for all edges e1, e2 ∈ E
with ρ (e1) = (v1,v2) and ρ (e2) = (v1,v2) such that λ(e1) ⊑S t
and λ(e1) = λ(e2) = f, it holds that e1 = e2.

DS2 (No loops): If (@noLoops, ∅) ∈ directivesS (t, f), then there
is no edge e ∈ E with ρ (e ) = (v,v ) such that λ(v ) ⊑S t and
λ(e ) = f.
DS3 (Target has at most one incoming edge): If
(@uniqueForTarget, ∅) ∈ directivesS (t, f), then for all e1, e2 ∈ E
with ρ (e1) = (v1,v3) and ρ (e2) = (v2,v3) such that λ(v1) ⊑S t,
λ(v2) ⊑S typeS (t, f), and λ(e1) = λ(e2) = f, it holds that e1 = e2.
DS4 (Target has at least one incoming edge): If
(@requiredForTarget, ∅) ∈ directivesS (t, f), then for all v2 ∈ V
such that λ(v2) ⊑S typeS (t, f), there is at least one edge e ∈ E
with ρ (e ) = (v1,v2) such that λ(v1) ⊑S t and λ(e ) = f.
DS5 (Property is required): If (@required, ∅) ∈ directivesS (t, f)
and typeS (t, f) ∈ S∪WS, then for everyv ∈ V such that λ(v ) ⊑S t,
it holds that 1) (v, f) ∈ dom(σ ) and 2) σ (v, f) is a nonempty list
if typeS (t, f) is a list type.
DS6 (Edge is required): If (@required, ∅) ∈ directivesS (t, f) and
typeS (t, f) < S∪WS, then for everyv1 ∈ V with λ(v1) ⊑S t, there
is at least one edge e ∈ E with ρ (e ) = (v1,v2) such that λ(e ) = f.
DS7 (Keys): If (@key, {fields:[f1, ... , fn]}) ∈ directivesS (t), then
for every two nodes v1,v2 ∈ V such that v1 = v2 if
– λ(v1) ⊑S t and λ(v2) ⊑S t, and
– for all i ∈ {1, ... ,n} such that typeS (t, fi ) ∈ S ∪ WS, holds

(i) (v1, fi ) < dom(σ ) and (v2, fi ) < dom(σ ), or
(ii) {(v1, fi ), (v2, fi )} ⊆ dom(σ ) and σ (v1, fi ) = σ (v2, fi ).

Definition 5.3 (Strong schema satisfaction). We say that a Prop-
erty GraphG = (V ,E, ρ, λ,σ ) strongly satisfies a GraphQL schema
S over (F, A, T, S, D) if it weakly satisfies it, satisfies its directives
and the following holds:
SS1 (All nodes are justified): For allv ∈V , it holds that λ(v ) ∈OT.
SS2 (All node properties are justified): For all (v, f) ∈ dom(σ )
with v ∈ V , it holds f ∈ fieldsS (λ(v )) and typeFS (λ(v ), f) ∈ S∪ WS.
SS3 (All edge properties are justified): For all (e, a) ∈ dom(σ )
with ρ (e ) = (v1,v2), it holds that a ∈ argsS ((λ(v1), λ(e )).
SS4 (All edges are justified): For all e ∈ E with ρ (e ) = (v1,v2),
it holds that λ(e ) ∈ fieldsS (λ(v1)) and typeFS (λ(v1), λ(e )) < S∪WS.

6 FORMAL ANALYSIS OF THE APPROACH
In this section we analyze the computational complexity of the pre-
sented approach. We focus on two computational problems: schema

validation and schema satisfiability. The first problem concerns de-
ciding for a given schema and Property Graph whether the graph
strongly satisfies the schema. The second problem concerns decid-
ing for a given schema and some element of that schema such as
an object type, a field, or an argument, if there is a Property Graph
that strongly satisfies the schema and populates that element.

6.1 Validation
Formally, the schema validation problem is defined as follows:

The Schema Validation Problem
Input: The sets (F, A, T, S, D), a GraphQL schema S over

those sets, and a Property Graph G.
Question: Does G strongly satisfy S?



It can be shown that this problem has a low computational com-
plexity and is highly parallelizable:

Theorem 1. Under the assumption that Scalars is a fixed finite

set and the problem of deciding if v ∈ values(t) for a scalar value

v ∈ Vals and a scalar type t ∈ Scalars is inAC0, the computational

complexity of the schema validation problem is in AC0.

If we interpret the Property Graph as a database instance and the
schema as a boolean query that is computed over the instance, then
the previous result can be interpreted as a combined complexity

result. Although a theoretically pleasing result, it does not immedi-
ately suggest a practical algorithm. However, from the observations
in the proof it follows that a straightforward implementation of the
first-order logical formulas leads already to a tractable algorithm
with time complexityO (n3) and space complexityO (log(n)). More-
over, if we look at data complexity and fix the schema, it can be
verified that none of the rules has more than two nested quantifiers
that quantify over elements of the Property Graph; and so under
this perspective the time complexity of that algorithm is in O (n2).

6.2 Satisfiability
An important soundness property of a schema is that every part
of the schema can be populated, i.e., for every type and field def-
inition there is at least one Property Graph that contains nodes,
properties or edges that instantiate that definition. This problem has
been studied in different settings such as the Entity-Relationship
Model [5], Object-oriented database schemas [8, 10] and UML Class
diagrams [6]. Unfortunately, it can have a high computational com-
plexity, even for schema formalisms with a relatively low expressive
power. This problem may also not be trivial in our formalism as
the following examples illustrate.

Example 6.1. Consider the following schema definition.

1 type OT1 {
2 }
3

4 interface IT {
5 hasOT1: OT1 @uniqueForTarget
6 }
7

8 type OT2 implements IT {
9 hasOT1: [OT1] @requiredForTarget
10 }
11

12 type OT3 implements IT {
13 hasOT1: [OT1] @requiredForTarget
14 }

This schema contains a conflict for type OT1. Assume a Property
Graph that has a node, say v0, with label OT1. Because of the
@requiredForTarget in the definition of OT2, v0 must have an
incoming edge with label hasOT1 from a node, say v1, with la-
bel OT2. Similarly, v0 must also have an incoming edge with label
hasOT1 from a node, sayv2, with label OT3. Since OT2 and OT3 both
implement the interface type IT, it holds that v1 and v2 are also
of type IT. The @uniqueForTarget in the definition of IT implies
that any node of type OT1 can have at most one incoming edge
from a node of type IT. It then follows that v1 = v2, but this leads
to a contradiction since v1 and v2 were assumed to be labeled with
OT2 and OT3, respectively, and a node can have only one label.

The previous schema can also be represented graphically, as is
shown in diagram (a) in the following figure.

OT1 IT

OT2 OT3

◁

◁

◁

(a)

OT2

OT1

◁

OT3

IT

◁

▷

◁

(b)

OT2

OT1

◁

OT3

IT

◁

◁

(c)

Here the double or single heads of the edges indicate if the relation
is one-to-many, many-to-many, one-to-one, or many-to-one. The
triangle illustrates on which side the relation is defined, pointing
from source to target. The black dot illustrates on which sides the
relation is required. The double edges indicate the implements and
is-part-of-union relationship. We omit the field name associated
with the relation, since this is in all cases the same.

In diagrams (b) and (c) we see other examples of conflicts: in
both diagrams the type OT2 is not satisfiable. In diagram (b) the
problem is that any satisfying Property Graph with an OT2 node
must have an infinite alternating chain of OT1 and OT3 nodes where
none of these nodes are allowed to be identical. The problem in
diagram (c) is that any node in OT2must be identical to an OT3 node
to which it must be connected to via an OT1 node.

The main problem that we focus on here is the one illustrated in
the previous examples, namely that of object type satisfiability.

The Object-Type Satisfiability Problem
Input: The sets (F, A, T, S, D), a GraphQL schema S over

those sets, and an object type ot in S.
Question: Is there a Property Graph (V ,E, ρ, λ,σ ) that

strongly satisfies S and contains at least one node
v ∈ V such that λ(v ) = ot?

Unfortunately it can be shown that this problem is NP-hard.

Theorem 2. The object-type satisfiability problem is NP-hard.

The following theorem gives an upper bound for the complexity.

Theorem 3. The object-type satisfiability problem is in PSPACE.

We conclude with briefly discussing the satisfiability of other
schema components. The satisfiability of interface and union types
is directly linked to the satisfiability of their implementing object
types and union components. The satisfiability problem for proper-
ties is trivial because of the consistency requirements for schemas.
Finally, the satisfiability of edge definitions is reducible to the prob-
lem of type satisfiability: add the @required to the field definition
and check if the type of the field definition is satisfiable.

7 CONCLUDING REMARKS
We have presented an approach that uses GraphQL schemas as
Property Graph schemas. To this end, we have given GraphQL
schemas a formal semantics and investigated the computational
complexity of schema validation and schema satisfiability. In fu-
ture work we aim to extend the approach for GraphQL APIs and
characterize the complexity of schema satisfiability more precisely.
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APPENDIX

A OVERVIEW OF THE GRAPHQL SDL
To illustrate the main features of the GraphQL schema definition
language (SDL) we refer to Figure 1. The language allows users to
define so-called object types that have a name and a set of field
definitions. Each field definition consists of a name and a value
type. For instance, the example schema in Figure 1 contains an
object type named Starship that has three field definitions for
fields named id, name, and length (cf. lines 1–5). Conceptually,
each field definition captures a data field that every object of the
given type has and that requests to the corresponding GraphQL
API can access by referring to the field name.

The value type of a field definition specifies what type of value
the API will return when the field is requested. For instance, the
name field of every Starship object will have a string as value.
Additionally, the GraphQL specification assumes a special value
called null that may also be returned instead of an actual value. A
field can be defined to be “non-nullable” by adding an exclamation
mark to the field definition, which means that for this field, null
will not be returned. For instance, the API of the example schema
will not return null for the id field of Starship objects.

Instead of values of a scalar type, fields may also be defined to
return values of an enumeration type, of an object type, or of an
interface or a union type. The latter are interesting as they allow
for some limited form of type hierarchies that can consist of two
levels, namely: unions over object types and, orthogonal to that,
interfaces that are implemented by object types (i.e., union types
and interface types cannot form hierarchies, but an object type
may participate in multiple union types and it may implement
multiple interface types). In the example schema we have a union
type called SearchResult (lines 33–44), and we have an interface
called Character (lines 9–13) which is implemented by the object
types Human and Droid. Moreover, by wrapping the type of a field
definition in square brackets (e.g., line 12), it can be indicated that
for the corresponding field, the API may return not only a single
value (of the type specified in the field definition) but a list of such
values. For instance, for the field friends in the example, we can
expect to retrieve a list of objects that are either Human or Droid.

Finally, field definitions may also contain definitions of so-called
arguments (e.g., line 4) that then can be used in the requests. For
instance, the value of the length field of a Starship object can be
requested in meters or in feet (with meters being the default).

B PROOFS
Theorem 1 Under the assumption that Scalars is a fixed finite set
and the problem of deciding if v ∈ values(t) for a scalar value v ∈
Vals and a scalar type t ∈ Scalars is in AC0, the computational

complexity of the schema validation problem is in AC0.

Proof. (Sketch) The proof is based on the following two obser-
vations: (1) the input can be encoded in a first-order structure such
that there is a family of AC0 circuits with a fixed maximal depth
that computes this encoding and (2) all rules for checking weak
satisfaction, directive satisfaction and strong satisfaction can for
that encoding be represented as boolean queries in the relational
calculus, for which the evaluation complexity (i.e., computing their

result on a give relational database) is known to be in AC0 (See
Theorem 17.1.2 in [1]). We elaborate on these two observations:

Encoding in first-order structure: The finite sets (F, A, T, S, D) and
be mapped to unary predicates F( f ), A(a), T(t ), S(s ) and D(d ). The
components of the schema can be mapped as follows:
• type

F
S
, typeAF

S
and type

AD
S

as
– typeF(t , f , t ′), typeAF(t , f ,a, t ′) and typeAD(d,a, t ′),
• unionS as union(t , t ′).
• implementationS as impl(t , t ′).
• directives

T
S
, directivesF

S
and directives

AF
S

as
– dirAF(t , f ,a,d,a′,v ), dirT(t ,d,a,v ) and dirF(t , f ,d,a,v ).

The components of a Property Graph (V ,E, ρ, λ,σ ) can be mapped
as follows:
• V as V(n), E as E(e ) and ρ as edge(e,n1,n2).
• λ as label(x , l ) and σ as val(x ,p,v ).

It is then not hard to see that under this mapping, for each predicate,
there is a family of AC0 circuits with a fixed maximal depth that
maps a binary representation of the input to a binary representation
of these predicates.

Mapping to first-order logic. It is not hard to see that most rules
have a form that is expressible in first-order logic given the pre-
sented mapping to predicates. Some rules need some special consid-
eration since they refer to predicates that are not in the first-order
structure: valuesW and ⊑S . We consider both of them:
• For valuesW: The number of types in S ∪ WS has a fixed finite
size since S ⊆ Scalars and Scalars is assumed to contain
a fixed number of types, and WS contains at most 6 times
as many types as S because only 8 patterns of nesting are
allowed. So we can assume that there is a family of AC0
circuits with a fixed maximal depth for computing this pred-
icate from the original input.
• For ⊑S : The implementation and union hierarchies are only
one level deep, and the wrapped types are also at most 3
levels deep. So for the resulting predicate we can assume that
there is a family of AC0 circuits with some fixed maximal
depth for computing this predicate.

Given the previous two observations we can construct a family of
AC0 circuits with a fixed maximal depth that compute the encoding
of the original input into a first-order structure that also contains
predicates for valuesW and ⊑S . This can be combined with obser-
vation that we also have such a family for evaluation the formulas
that define strong satisfiability, by simply concatenating the circuits
for the encoding and the formula evaluation, which results in a
family of AC0 circuits that decide whether the given property graph
satisfies the given GraphQL schema. □

Theorem 2 The object-type satisfiability problem is NP-hard.

Proof. (Sketch) The proof proceeds by showing that the SAT
problem, satisfiability of propositional formulas in conjunctive nor-
mal form, can be reduced that the object-type satisfiability problem.
We do this by constructing a schema with a type ot such that this
type is satisfiable iff the propositional formula φ is satisfiable. This
construction picks a field name f and proceeds as follows:

(1) We introduce an object type ot.



1 type Starship {
2 id: ID!
3 name: String
4 length(unit:LenUnit = METER): Float
5 }
6

7 enum LenUnit { METER FEET }
8

9 interface Character {
10 id: ID!
11 name: String
12 friends: [Character]
13 }

13 type Human implements Character {
14 id: ID!
15 name: String
16 friends: [Character]
17 starships: [Starship]
18 }
19

20 type Droid implements Character {
21 id: ID!
22 name: String
23 friends: [Character]
24 primaryFunction: String!
25 }

26 type Query {
27 hero(episode: Episode): Character
28 search(text: String): [SearchResult]
29 }
30

31 enum Episode { NEWHOPE EMPIRE JEDI }
32

33 union SearchResult = Human | Droid |
34 Starship
35 schema {
36 query: Query
37 }
38

Figure 1: Example GraphQL schema written in the GraphQL schema definition language (example adapted from [12]).

(2) If φ = ψ1 ∧ ... ∧ψn , we introduce an interface type ii for
each 1 ≤ i ≤ n.

(3) For each type ti a field f : [ot] is defined with directive
@requiredForTarget.

(4) If ψi = αi,1 ∨ ... ∨ αi,mi with each αi, j possibly negated
propositional variables, then we create for each αi, j an object
type oti, j and declare it as implementing ii .

(5) For any two atoms αi, j and αi′, j′ such that αi, j = ¬αi′, j′ , we
create an interface type ii, j,i′, j′ , and (1) declare the types
oti, j and oti′, j′ as implementations of this interface type
and (2) define with each a field f : [ot] with directive
@uniqueForTarget.

For example, the formula (A ∨ ¬B ∨ C ) ∧ (¬A ∨ ¬C ) ∧ (D ∨ B)
is translated to the following schema (where the types are shown
labeled with the part of the formula they represent, and Â represents
the type that encodes that atoms A and ¬A conflict):

A B̄ C Ā C̄ D B

ψ1 ψ2 ψ3

ot

▷ ◁ ◁

Â Ĉ B̂

▷

▷

◁

It is not hard to see that (1) the resulting schema has a size that is
polynomial in the size of φ and (2) there is a property graph with a
node with label ot that strongly satisfies this schema iff φ is satisfi-
able, since the nodes associated with the node in type ot define a
propositional truth assignment that satisfies φ and vice versa. □

Theorem 3 The object-type satisfiability problem is in PSPACE.

Proof. We first consider schemas without the @key, @noLoops
and scalar-valued fields and arguments, which translate to proper-
ties of nodes and edges. Such schemas can be simulated the descrip-
tion logic called ALCQI. This description logic has the standard
ALC constructs, such as ⊤ (top), ⊥ (bottom), A (a concept name),
¬C (negation of a concept), C ⊓ D (intersection of two concepts),
C ⊔ D (union of two concepts), ∃R.C (existential qualification) and
∀R.C (universal qualification). Next to that,ALCQI contains qual-
ified number restrictions such as ≥n R.C and ≤n R.C , and allows the
usage of an inverse role R− in expressions where a role is expected.

This description logic allows us to simulate the constructs in our
schemas:
• If t is a union type over t1, ... , tn , or an interface type
that is implemented by these types, this can be expressed as
ut ≡ t1 ∪ ... ∪ tn .
• If t has a non-scalar field with name f and with base type
tt, this can be expressed as (∃f −.t) ⊑ tt. If the type of the
field is not a list type, and the edge therefore required, this
can be stated as t ⊑ (≤1 f .tt)
• If the field is marked as @required, this can be stated as
t ⊑ (∃f .tt).
• If the field is marked as @requiredForTarget, this can be
stated as tt ⊑ (∃f −.t).
• If the field is marked as @uniqueForTarget, this can be
stated as tt ⊑ (≤1 f −.t).
• That fact that nodes belong to exactly one objects type can
be expressed as (1) ot1 ⊓ ot2 ≡ ⊥ for each distinct pair ot1
and ot2 of object types, and (2) ⊤ ≡ ot1 ⊔ ... ⊔ otn where
ot1, ... , otn is the list of all object types.

Note that we ignore @distinct directives, but that is because in this
description logic all edges identified by their begin and end nodes.
Note, however, that in this stage this does not matter because we do
not consider properties, so we can merge or multiply edges with the
same nodes without affecting the satisfaction of the schema. It can
then be concluded that an object type in a schema is satisfiable iff its
corresponding concept is satisfiable in the translation to ALCQI.

Moreover, if we add back the constraints for scalar-valued fields
and arguments, this will also not change the satisfiability since we
can always assign their values such that they are of the right type.
The same holds for the @key directives: assuming that all scalar
types have an infinite set of values we can always pick the values of
the involved properties such that the key constraints hold. Finally
also the @noLoops does not affect satisfiability since we can always
remove loops as follows: make a distinct copy of the property graph,
remove the loop and replace it with identical back and forth edges
between the loop node and its copy.

It follows that we can used the described translation to decide
if a certain object type is satisfiable. Since the size of the trans-
lated schema is polynomial in the size of the original schema, it
follows from the PSPACE upper bound for the problem of concept
satisfiability in ALCQI [20, Theorem 4.29] that the object-type
satisfiability problem also has a PSPACE upper bound. □
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