
An Initial Analysis of Facebook’s GraphQL Language

Olaf Hartig1 and Jorge Pérez2

1 Dept. of Computer and Information Science (IDA), Linköping University, Sweden
olaf.hartig@liu.se

2 Department of Computer Science, Universidad de Chile
jperez@dcc.uchile.cl

Abstract Facebook’s GraphQL is a recently proposed, and increasingly adopted,
conceptual framework for providing a new type of data access interface on the
Web. The framework includes a new graph query language whose semantics has
been specified informally only. The goal of this paper is to understand the prop-
erties of this language. To this end, we first provide a formal query semantics.
Thereafter, we analyze the language and show that it has a very low complex-
ity for evaluation. More specifically, we show that the combined complexity of
the main decision problems is in NL (Nondeterministic Logarithmic Space) and,
thus, they can be solved in polynomial time and are highly parallelizable.

1 Introduction
After developing and using it internally for three years, in 2016, Facebook released
a specification [2] and a reference implementation3 of its GraphQL framework. This
framework introduces a new type of Web-based data access interfaces that presents an
alternative to the notion of REST-based interfaces [6]. Since its release GraphQL has
gained significant momentum and has been adopted by an increasing number of users.4

A core component of the GraphQL framework is a query language that is used to
express the data retrieval requests issued to GraphQL-aware Web servers. While there
already exist a number of implementations of this language (which is not to be con-
fused with an earlier graph query language of the same name [5]), a more fundamental
understanding of the properties of the language is missing. This paper presents pre-
liminary work towards closing this gap, which is important to identify fundamental
limitations and optimization opportunities of possible implementations and to compare
the GraphQL framework to other Web-based data access interfaces such as REST ser-
vices [6], SPARQL endpoints [3], and other Linked Data Fragments interfaces [8].

Before we describe the contributions of our work, we briefly sketch the idea of
queries and querying in the GraphQL framework: Syntactically, GraphQL queries re-
semble the JavaScript Object Notation (JSON) [1]. However, in contrast to arbitrary
JSON objects, GraphQL queries are written in terms of a so-called schema which the
queried Web server supports [2]. Informally, such a schema defines types of objects by
specifying a set of so-called fields for which the objects may have values; the possible
values can be restricted to a specific type of scalars or objects. For instance, Figure 1
presents a GraphQL schema specification about Star Wars movies, which is also given
in a JSON-like syntax [2] (we describe the elements in the schema specification in more
detail below). Figure 2(a) presents a corresponding GraphQL query that, for the hero of

3 http://graphql.org/code/
4 http://graphql.org/users/ (note that popular sites such as Coursera, Github, Pinterest are users)

http://graphql.org/code/
http://graphql.org/users/


type Starship {
id: ID!
name: String!
length(unit: String): Float

}

interface Character {
id: ID!
name: String!
friends: [Character]
appearsIn: [Episode]!

}

type Droid implements Character {
id: ID!
name: String!
friends: [Character]
appearsIn: [Episode]!
primaryFunction: String

}

type Human implements Character {
id: ID!
name: String!
friends: [Character]
appearsIn: [Episode]!
starships: [Starship]
totalCredits: Int

}

union SearchResult = Human | Droid | Starship

enum Episode { NEWHOPE, EMPIRE, JEDI }

type Query {
hero(episode: Episode!): Character
droid(id: ID!): Droid
node(id: ID!): SearchResult

}

Figure 1. Example GraphQL schema (from http://graphql.org/learn/schema/).

the JEDI episode, returns the name and the episodes that the hero appears in; addition-
ally, the query returns the value of either the totalCredits or the primaryFunction
field, depending on whether the hero is a human or a droid. The GraphQL specification
defines the semantics of such queries by using an operational definition that assumes
an “internal function [...] for determining the [...] value of [any possible] field” of any
given object [2]. This internal function is not specified any further and, instead, it is left
to the implementation what exactly this function does. Hence, the given query semantics
is not formally grounded in any specific data model. However, the data that is exposed
via a GraphQL interface can be conceived of as a virtual, graph-based view of an un-
derlying dataset; this view is established by the implementation of the aforementioned
internal function and it takes the form of a graph that is similar to a Property Graph [7].

As a basis for our work we define a logical data model that formally captures the
notion of this graph, as well as the corresponding notion of a GraphQL schema (cf. Sec-
tion 2). Thereafter, based on our data model, we formalize the semantics of GraphQL
queries by using a compositional approach (cf. Section 3). These are the main concep-
tual contributions of the paper. As a technical contribution we use our formalization
to study the computational complexity of the language (cf. Section 4). We show that,
even though the size of query results may be exponential in the size of the queries, the
evaluation decision problem lies in a very low complexity class; it can be solved in
Nondeterministic Logarithmic Space and, thus, is highly parallelizable.

2 Data Model
The GraphQL specification does not provide a definition of a data model that is used as
the foundation of GraphQL. However, the specification implicitly assumes a logical data
model that is implemented as a virtual, graph-based view over some underlying DBMS.
In this section we make this logical data model explicit by providing a formal definition
thereof. For each concept of the GraphQL specification that our definitions capture, we
refer to corresponding section of the specification that introduces the concept.

2.1 GraphQL Schema
We consider the following infinite countable sets: Fields (field names, §2.5 of [2]),
Arguments (argument names, §2.6 of [2]), Types (type names, §3.1 of [2]) , and we
assume that Fields, Arguments and Types are disjoint and that there exists a finite

http://graphql.org/learn/schema/


hero[episode:JEDI]{
name

appearsIn

on Human{ totalCredits}
on Droid{ primaryFunction}
}

(a)

hero{
name:"R2-D2"
appearsIn:[NEWHOPE EMPIRE JEDI]
primaryFunction:null
}

(b)

Figure 2. Example query and result.

set Scalars (scalar type names, §3.1.1 of [2])5 which is a subset of Types. We also
consider a set Vals of scalar values, and a function values : Scalars → 2Vals that
assigns a set of values to every scalar type.

GraphQL schemas and graphs are defined over finite subsets of the above sets. Let
F, A, and T be finite sets such that F ⊂ Fields, A ⊂ Arguments, and T ⊂ Types. We
also assume that T is the disjoint union of OT (object types, §3.1.2 of [2]), IT (interface
types, §3.1.3 of [2]), UT (union types, §3.1.4 of [2]) and Scalars, and we denote by LT
the set {[ t ] | t ∈ T} of list types constructed from T (cf. §3.1.7 of [2]).

We now have all the necessary to define a GraphQL schema over (F, A, T).

Definition 1. A GraphQL schema S over (F, A, T) is composed of three assignments:
– fieldsS : (OT ∪ IT)→ 2F that assigns a set of fields to every object or interface type,
– argsS : F→ 2A that assigns a set of arguments to every field,
– typeS : F∪ A→ T∪ L that assigns a type or a list type to every field and argument,

where arguments are assigned scalar types; i.e., typeS(a) ∈ Scalars for all a ∈ A,

and functions that define interface and union types:

– unionS : UT → 2OT that assigns a nonempty set of object types to every union type,
– implementationS : IT → 2OT that assigns a set of object types to every interface.

Additionally, S contains a distinguished type qS ∈ OT called the query type.

For the sake of avoiding an overly complex formalization, in our definition of a
GraphQL schema we ignore the additional notions of input types (cf. §3.1.6 of [2]),
non-null types (cf. §3.1.8 of [2]), and a mutation type (§3.3 of [2]). However, we capture
the concept of interfaces and their implementation (cf. §3.1.3 of [2]) by introducing a
notion of consistency. Informally, a GraphQL schema is consistent if every object type
that implements an interface type i defines at least all the fields that i defines. Formally,
S is consistent if fieldsS(i) ⊆ fieldsS(t) for every t ∈ implementationS(i). From now
on we assume that all GraphQL schemas in this paper are consistent.

Example 1. The schema specified in Figure 1 may be captured as S over (F, A, T) with
F = {id f , name, friends, appearsIn, starships, totalCredits,

primaryFunction, length, hero, droid, node},

A = {ida, unit, episode}, and
T = OT ∪ IT ∪ UT ∪ Scalars such that:

OT = {Human, Droid, Starship, Query}, IT = {Character},

Scalars = {ID, String, Int, Float, Episode}, UT = {SearchResult}.

5 For the sake of simplicity, we assume that Scalars includes the enum types that are treated
separately in the GraphQL specification (cf. §3.1.5 of [2]).



As we can see in Figure 1, in the original GraphQL syntax, object types are defined
using the keyword type, interface types with the keyword interface, and union
types with the keyword union. Also notice that the schema in Figure 1 introduces
both a field and an argument with name id. To avoid ambiguities we have used two
different names: id f and ida. The values for the scalar types are implicit in their
names (String, Float, Int) except for ID which is a special scalar type used for
unique identifiers in a GraphQL schema specification (cf. §3.1.1.5 of [2]), and Episodes
which is an enum type such that values(Episodes) = {NEWHOPE, EMPIRE, JEDI}. Re-
garding the functions that compose S we have that fieldsS defines the assignments:

Starship → {id f , name, length},

Character → {id f , name, friends, appearsIn},

Droid → {id f , name, friends, appearsIn, primaryFunction},

Human → {id f , name, friends, appearsIn, starships, totalCredits},

Query → {hero, droid, node}.

argsS defines the assignments:
length → {unit}, hero → {episode},

droid → {ida}, node → {ida},

and typeS defines the assignments:
ida → ID, episode → Episode, unit → String,

id f → ID, friends → [Character], name → String,

droid → Droid, appearsIn → [Episode], hero → Character,

totalCredits → Int, node → SearchResult,

primaryFunction → String, length → Float,

The functions that define union and interface types, respectively, are such that
unionS(SearchResult) = {Human, Droid, Starship},

implementationS(Character) = {Human, Droid}.

2.2 GraphQL Graphs

The logical data model assumed by GraphQL considers data that can be represented
in a graph-based form. Such a graph is a directed, edge-labeled multigraph in which
each node has a type and properties. We define this graph by using the aforementioned
domain (F, A, T). Then, each node in the graph is associated with an object type from T.
The edge labels, as well as the names of node properties, consist of a field name from F
and a set of arguments, where such an argument is a pair consisting of a distinct argu-
ment name from A and a corresponding value (note that the set of arguments may be
empty). The value of each node property is either a single scalar value or a sequence
thereof. The following definition captures our notion of a GraphQL graph formally.

Definition 2. A GraphQL graph over (F, A, T) is a tuple G = (N, E, τ, λ) where:

– N is a set of nodes,
– E is a set of edges of the form (u, f[α], v) where u, v ∈ N, f ∈ F, and α is a partial

mapping from A to Vals,
– τ : N → OT is a total function that assigns a type to every node, and



Figure 3. Example GraphQL graph.

– λ is a partial function that assigns a scalar value v ∈ Vals or a sequence [v1 · · · vn]
of scalar values (vi ∈ Vals) to some pairs of the form (u, f[α]) where u ∈ N, f ∈ F,
and α is a partial mapping from A to Vals.

Example 2. Figure 3 illustrates a small GraphQL graph Gex = (Nex, Eex, τex, λex) over
the domain (F, A, T) as given in Example 1. Gex contains two nodes, Nex = {n0, n1}, and
three edges, including (n0, droid[α1], n1) ∈ Eex with α1(ida) = 2001. Function τex
defines the assignments:

n0 → Query, n1 → Droid,

and function λex defines the assignments:

(n1, id f [α∅])→ 2001, (n1, name[α∅])→ "R2-D2",

(n1, appearsIn[α∅])→ [NEWHOPE EMPIRE JEDI].

Observe that Definition 2 introduces the notion of a GraphQL graph independent of
any particular GraphQL schema. However, for the purpose of defining queries over such
a graph, the graph is assumed to conform to a given schema. Informally, the conditions
that conformance to a schema imposes on a GraphQL graph are summarized as follows:
For every edge, the field name that labels the edge is among the field names that the
schema specifies for the type of the source node of the edge. The type that the schema
associates with this field name must match the type of the target node of the edge,
and if this type associated with the field name is not a list type, then the target node
is the only node connected to the source node by an edge with the given field name.
Moreover, for every argument associated with an edge, the argument name must be
among the argument names that the schema associates with the field name that labels the
edge, and the value of the argument must be of the type associated with that argument
name. In addition to these conditions for the edge labels, there exist similar conditions
for the node properties. Finally, the graph must contain a designated node whose type
is the query type of the schema. Providing a formal definition of these conditions is
straightforward. Due to space limitations, we therefore omit the definition in this paper.

Example 3. The GraphQL graph in Example 2 conforms to the schema in Example 1.

3 Definition of the GraphQL Query Language

In this section we provide a formal definition of the GraphQL query language. In par-
ticular, we first define a concise syntax of GraphQL queries that resembles closely the
JSON-like syntax introduced in the GraphQL specification (cf. §2 of [2]). Thereafter,
we define a formal semantics of these queries. However, before going into the formal
definitions, we give some intuition of the expressions based on which GraphQL queries
may be constructed and how these expressions are evaluated over a GraphQL graph.

The most basic construction in our syntax of GraphQL queries are expressions of the
form f[α]. Informally, when evaluated over a GraphQL graph, such an expression can



be used to match node properties whose name has the same form. Then, assuming the
value of the property is a scalar value v, or a sequence [v1 · · · vn] of scalar values, then
the result of the evaluation is a string of the form f:v, or f:[v1 · · · vn]. An alternative
to the construction f[α] is `:f[α] which captures the notion of “field aliases” (cf.
§2.7 of [2]). Such aliases can be used to rename the field names that appear in the query
result. That is, when using this alternative construction, the results will be strings of the
form `:v or `:[v1 · · · vn].

To match edges, expressions of the form f[α]{ϕ} can be used, where ϕ is a sub-
query to be evaluated in the context of the target nodes. Then, for the case of a single
matching edge, the result is a string of the form f:{ρ} with ρ being the string resulting
from the evaluation of the subquery ϕ. On the other hand, if the number of matching
edges may be greater than one (which may be the case if the type associated with field f
is a list type), then the result string is of the form f:[{ρ1} · · · {ρn}]. Expressions of the
form f[α]{ϕ} can also be prefixed with a field alias: `:f[α]{ϕ}.

Our query syntax introduces two more constructions: on t{ϕ} and ϕ1 · · ·ϕn. While
the latter is simply an enumeration of multiple subexpressions whose results are meant
to be concatenated, the former captures the notion of a “type condition” that is given
by what the GraphQL specification refers to as an “inline fragment” (cf. §2.8.2 of [2]).
Hence, t is either an object type, an interface type, or a union type, and ϕ is a sub-
query to be evaluated only for non-terminal nodes whose associated (object) type is
compatible with t (a formal definition of this notion of compatibility follows shortly).

Readers who are familiar with the query syntax introduced in the GraphQL spec-
ification may notice that we do not capture a number of additional language features,
namely, (non-inline) “fragments” (§2.8 of [2]), “variables” (§2.10 of [2]), and “direc-
tives” (§2.12 of [2]). We emphasize that these features are merely syntactic sugar that
a query parser may resolve by using the features captured in the presented syntax.

The following definition formalizes our syntax of GraphQL queries.

Definition 3. A GraphQL query over (F, A, T) is an expression constructed from the
following grammar where [, ], {, }, :, and on are terminal symbols, f ∈ F, ` ∈ Fields,
t ∈ OT ∪ IT ∪ UT, and α represents a partial mapping from A to Vals.

ϕ ::= f[α] | `:f[α] | f[α]{ϕ} | `:f[α]{ϕ} | on t{ϕ} | ϕ · · ·ϕ

For the sake of conciseness (and in correspondence with the original GraphQL syn-
tax), for sub-expressions of the form f[α] with α the empty mapping, we just write f.

To define a formal semantics of GraphQL queries we first observe that the query
semantics described in the GraphQL specification assume that queries satisfy a notion
of validity w.r.t. a given GraphQL schema (cf. §5 of [2]). We make the same assumption.
To this end, we define validity of queries in terms of our formalization as follows.

Definition 4. Let S be a GraphQL schema over (F, A, T), let Q be a GraphQL query
over (F, A, T), and let t∗ be a type in OT ∪ IT ∪ UT ⊆ T. Then, Q conforms to S in the
context of t∗, denoted by Q |=t

∗

S, if Q satisfies the following conditions:

1. If Q is of the form f[α] or `:f[α], then
– t∗ < UT, f ∈ fieldsS(t∗), dom(α) ⊆ argsS(f), and
– assuming typeS(f) = t or typeS(f) = [t], t ∈ Scalars.

2. If Q is of the form f[α]{ϕ} or `:f[α]{ϕ}, then
– t∗ < UT, f ∈ fieldsS(t∗), dom(α) ⊆ argsS(f), and



– assuming typeS(f) = t or typeS(f) = [t], t < Scalars and ϕ |=t S.
3. If Q is of the form on t{ϕ}, then ϕ |=t S.
4. If Q is of the form ϕ1 · · ·ϕn, then ϕi |=

t∗ S for every ϕi ∈ {ϕ1, ... , ϕn}.

Moreover, we say that Q conforms to S if Q |=qS S (where qS is the query type of S).

Example 4. The GraphQL query in Figure 2(a) conforms to the schema in Example 1.

As a last preliminary for formalizing the query semantics of GraphQL we require a
definition of the notion of a result that a GraphQL query may return. As for the queries,
we use expressions that resemble the expressions used in the GraphQL specification.

Definition 5. A GraphQL result object is constructed from the following grammar where
` ∈ Fields, v, v1, ... , vn ∈ Vals, and {, }, [, ], :, and null are terminal symbols:

ρ ::= `:v | `:[v1 · · · vn] | `:{ρ} | `:[{ρ} · · · {ρ}] | ρ · · · ρ | `:null

We now are ready to define a formal semantics of GraphQL queries. To this end,
we introduce an evaluation function that, for any GraphQL query and any GraphQL
graph (both conforming to a given schema), defines the corresponding query result.

Definition 6. Let G = (N, E, τ, λ) be a GraphQL graph over (F, A, T), let Q be a GraphQL
query over (F, A, T), and let S be a GraphQL schema over (F, A, T) such that G and Q
conform to S. The S-specific evaluation of Q over G from node u ∈ N, denoted by
JQKu

G, is a GraphQL result object that is defined recursively as follows.

Jf[α]Ku
G =

{
f:λ(u, f[α]) if (u, f[α]) ∈ dom(λ)
f:null else.

J`:f[α]Ku
G =

{
`:λ(u, f[α]) if (u, f[α]) ∈ dom(λ)
`:null else.

Jf[α]{ϕ}Ku
G =


f:[{JϕKv1

G } · · ·{JϕK
vk
G }] if typeS(f) ∈ LT and {v1, ... , vk} = {vi | (u, f[α], vi) ∈ E}

f:{ JϕKv
G } if typeS(f) < LT and (u, f[α], v) ∈ E

f:null if typeS(f) < LT and there is no v ∈ N s.t. (u, f[α], v) ∈ E

J`:f[α]{ϕ}Ku
G =


`:[{JϕKv1

G } · · ·{JϕK
vk
G }] if typeS(f) ∈ LT and {v1, ... , vk} = {vi | (u, f[α], vi) ∈ E}

`:{ JϕKv
G } if typeS(f) < LT and (u, f[α], v) ∈ E

`:null if typeS(f) < LT and there is no v ∈ N s.t. (u, f[α], v) ∈ E

Jon t{ϕ}Ku
G =


JϕKu

G if t ∈ OT and τ(u) = t

JϕKu
G if t ∈ IT and τ(u) ∈ implementationS(t)

JϕKu
G if t ∈ UT and τ(u) ∈ unionS(t)

ε in other case. (ε denotes the empty word)

Jϕ1 · · ·ϕkKu
G = Jϕ1Ku

G · · · JϕkKu
G

Finally, the S-specific evaluation of Q over G, denoted by JϕKG, is simply JϕKG = JϕKu
G

where u is the single node in G such that τ(u) = qS.

In the third and fourth cases in Definition 6 whenver typeS(f) ∈ LT the evaluation
produces a sequence from a set of nodes {v1, ... , vk}. Notice that the order of the se-
quence depends on the order in which we consider the nodes in the previous set. The



original GraphQL specification implicitly assumes an order associated to every outgo-
ing edge in the graph, and this order is used to produce the mentioned sequences. To
keep our formalization as simple as possible we did not formally introduce these order
relations in this paper.

Example 5. Consider the GraphQL query in Figure 2(a) and the GraphQL schema S
introduced in Example 1. Figure 2(b) illustrates the result of the S-specific evaluation
of this example query over the graph in Example 2.

4 Complexity Results

Notice that a GraphQL query has as solution always a single result object, nevertheless,
this result may be of exponential size as stated in the following proposition.

Proposition 1. For every GraphQL query ϕ and GraphQL graph G it holds that JϕKG

is of size O(|G||ϕ|). Moreover, there exists a family of queries {ϕn}n≥1 and a graph G,
such that every query ϕn is of size O(n) but the evaluation JϕnKG is of size Ω(2n).

Proof (sketch). Consider a schema with an object type Person with fields name and
knows such that name is a scalar, and knows is a list in which every element is of
type Person. Additionally, the query type qS has a single field query of type Person.
Let G = (V, E, τ, λ) be such that V = {u, v,w, x}, E = {(u, query, v), (v, knows,w),
(v, knows, x), (w, knows, v), (x, knows, v)}, τ(u) = qS, τ(v) = τ(w) = τ(x) = Person,
λ(v, name) = Alice. Consider now the queries given by the following recurrence

α1 = name, and αi = knows{knows{αi−1}} (for every i > 1),

and define ϕn as query{αn}. It is clear that the size of ϕn is linear in n but the evaluation
of ϕn over G is of size exponential in n; in fact, the name Alice occurs 2n−1 times
in JϕnKG. The exponential upper bound can be proved by a simple induction argument
over the evaluation function in Definition 6. ut

We now go to some of the related decision problems for GraphQL. Notice that the
result of a GraphQL query is not a set of tuples (as it is for more classical query lan-
guages). Thus, we need to introduce some further notions to properly define the evalu-
ation decision problem in our context. Given two GraphQL result objects ρ and ρ′, we
say that ρ occurs in ρ′ if ρ is a substring of ρ′. Notice that a result object may occur sev-
eral times in another. We next introduce the notion of removing a result object. Assume
that ρ occurs in ρ′, then the result object obtained by removing ρ from ρ′ is the sub-
string of ρ′ obtained from deleting an (arbitrary) occurrence of ρ and then recursively
performing the following procedure:

1. delete every substring of the form {},
2. delete every substring of the form `:[] (with ` ∈ Fields),
3. repeat the two above steps until no further deletion is possible.

The above procedure ensures that removing a result object from another produces a
valid result object. For instance, consider the following result objects:



ρ1 = p:{n:Alice knows:[{n:Bob}{n:Charly}] son:{n:Dylan knows:[{n:Ed}]}}
ρ2 = n:Dylan knows:[{n:Ed}]
ρ3 = p:{n:Alice knows:[{n:Bob}{n:Charly}]}
ρ4 = p:{n:Alice knows:[{n:Bob}]}
ρ5 = knows:[{n:Bob}]

Then ρ2 occurs in ρ1. Also notice that, although ρ3 does not occur in ρ1, result object ρ3
is obtained from ρ1 by removing ρ2. Now, we say that ρ is a reduction of ρ′ if ρ can be
obtained from ρ′ by removing some result objects that occur in it. Finally, we say that
ρ is a subresult of ρ′ if ρ occurs in a reduction of ρ′. Considering our example above,
we have that ρ4 is a reduction of ρ3 and thus is also a reduction of ρ1. Moreover, since
ρ5 occurs in ρ4, we have that ρ5 is a subresult of ρ1. Intuitively, when ρ is a subresult
of ρ′, we know that all the data in ρ appears in ρ′ respecting the structure of the original
result object. With these definitions we can formalize the following decision problem:

Problem : GqlEval
Input : a GraphQL query ϕ, a graph G, and a result object ρ
Question : is ρ a subresult of JϕKG?

Theorem 1. GqlEval is NL-complete.

Proof (Sketch). One main ingredient in the proof is to see GraphQL queries and result
objects as trees. Intuitively, a query can be seen as a edge-labeled tree that follows the
structure of the {} symbols. For instance the GraphQL query a{b{c d} e{f}} can be
represented as a tree in which the root has a single outgoing a-labeled edge to a node,
say n, with two outgoing edges labeled with b and e. The b-child of n has two outgoing
edges labeled with c and d, while the e-child of n has only one f-labeled outgoing edge.
For result objects the situations is similar but structures of the form a:[{ρ1} · · · {ρk}]
represents several a-labeled edges to every one of the trees constructed from ρ1, ... , ρk,
and structures of the form a:v with v a scalar, represent an edge pointing to a leaf node
labeled with v. With this representation we can talk about root, paths, and leaves in
GraphQL queries and result objects, respectively. Another observation is that we can
traverse a query by following its tree structure, that is, going from one label up to its
parent, down to one of its children, or left/right to its siblings, by using logarithmic
space. A similar traversal can be done for result objects.

We now have all the necessary to sketch the NL membership of GqlEval. First we
guess the position, say p, of a label in ϕ, and a node, say u, in G. The intuition is that p
represents the part of the query ϕ that when evaluated over G from node u contains ρ as
a subresult object. This last property can be checked in NL as follows. We first check
that ρ matches the schema of query ϕ at position p. To this end, we consider every edge
of the form a:v (that is, an edge to a leaf node) in ρ and its corresponding path from
the root of ρ. Lets denote by Pa:v this path (which is essentially a sequence of labels).
Then we check that there is a path in the query ϕ starting at p that matches Pa:v. Notice
that we are performing reachability tests that can de done in NL (actually in L since the
reachability is on trees). We still need to check two further properties: (1) that node u
can be reached from the query node in G by following the corresponding path in ϕ from
the root to position p, and that (2) the data in result object ρ can actually be obtained



from G starting at node u. Check (1) can be done in NL by a standard reachability test.
To check (2) we only need to iterate over all leaves of the form a:v in ρ and check that
there exists a path in G from u to a node v that matches the labels of the path from the
root of ρ to a:v, and such that λ(v, a) = v. It can be proven that these checks are a
necessary and sufficient condition to check that ρ is a subresult of JϕKG.

NL-hardness follows easily from the reachability problem in directed graphs. Given
a directed graph G with N nodes and two nodes u and v, we create a GraphQL graph G′

by adding a label, say a to every edge, an initial query node q to G, an edge labeled q
from q to u, and a data value, say 1, associated to attribute b in node v. Types of nodes
in G′ are arbitrary. Then we consider the sequence of queries constructed recursively as
α0 = b and αi = b a{αi−1}, and the query ϕ = q{αN−1}. It is not difficult to argue that
G′ and ϕ can be constructed from G by using logarithmic space. Moreover, the result
object b:1 is a subresult of JϕKG′ if and only if v is reachable from u in G. ut

5 Concluding Remarks and Future Work

We have embarked on the study of Facebook’s GraphQL language; that is, we have
formalized its syntax and semantics and presented some initial complexity results. This
new language opens several interesting directions for future research.

Our current ongoing work includes a complexity study and algorithm design for
more practical problems related to GraphQL, including the parallel evaluation of queries
and the estimation of the size of a result object before computing the result. Our initial
findings show that, as for the case of the evaluation decision problems, these problems
also have a very low computational complexity.

As another important topic for future research we plan to compare the GraphQL
query language with classical query languages. An immediate candidate in terms of
expressive power and complexity is the language of acyclic conjunctive queries (ACQs).
The (combined) complexity of ACQs is LOGCFL-complete [4] and, since it is believed
that NL ( LOGCFL, the membership of GqlEval in NL shows an important difference
in terms of complexity between the two languages.

References

1. ECMA. ECMA-404: The JSON Data Interchange Format. ECMA (European Association for
Standardizing Information and Communication Systems), Geneva, Switzerland, 2013.

2. Facebook, Inc. GraphQL. Working Draft, Oct. 2016. Online at http://facebook.github.io/
graphql, retrieved on Dec. 12, 2016.

3. L. Feigenbaum and G. T. Williams. SPARQL 1.1 Protocol for RDF. W3C Rec., 2013.
4. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. J.

ACM, 48(3):431–498, 2001.
5. H. He and A. K. Singh. Graphs-at-a-time: Query Language and Access Methods for Graph

Databases. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 405–418, 2008.

6. L. Richardson, M. Amundsen, and S. Ruby. RESTful Web APIs. O’Reilly Media, Inc., 2013.
7. I. Robinson, J. Webber, and E. Eifrém. Graph Databases. O’Reilly Media, 2013.
8. R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester,

G. Haesendonck, and P. Colpaert. Triple Pattern Fragments: a Low-cost Knowledge Graph
Interface for the Web. Journal of Web Semantics, 37–38:184–206, 2016.

http://facebook.github.io/graphql
http://facebook.github.io/graphql

	An Initial Analysis of Facebook's GraphQL Language
	Introduction
	Data Model
	GraphQL Schema
	GraphQL Graphs

	Definition of the GraphQL Query Language
	Complexity Results
	Concluding Remarks and Future Work


