
Semantics and Complexity of GraphQL
Preprint Version∗

Olaf Hartig

Dept. of Computer and Information Science (IDA),

Linköping University

olaf.hartig@liu.se

Jorge Pérez

Department of Computer Science

Universidad de Chile

jperez@dcc.uchile.cl

ABSTRACT
GraphQL is a recently proposed, and increasingly adopted, concep-

tual framework for providing a new type of data access interface

on the Web. The framework includes a new graph query language

whose semantics has been specified informally only. This has pre-

vented the formal study of the main properties of the language.

We embark on the formalization and study of GraphQL. To this

end, we first formalize the semantics of GraphQL queries based on a

labeled-graph data model. Thereafter, we analyze the language and

show that it admits really efficient evaluation methods. In particular,

we prove that the complexity of the GraphQL evaluation problem

is NL-complete. Moreover, we show that the enumeration problem

can be solved with constant delay. This implies that a server can

answer a GraphQL query and send the response byte-by-byte while

spending just a constant amount of time between every byte sent.

Despite these positive results, we prove that the size of a GraphQL

response might be prohibitively large for an internet scenario. We

present experiments showing that current practical implementa-

tions suffer from this issue. We provide a solution to cope with this

problem by showing that the total size of a GraphQL response can

be computed in polynomial time. Our results on polynomial-time

size computation plus the constant-delay enumeration can help

developers to provide more robust GraphQL interfaces on the Web.

1 INTRODUCTION
After developing and using it internally for three years, in 2016,

Facebook released a specification [5] and a reference implemen-

tation of its GraphQL framework. This framework introduces a

new type of Web-based data access interfaces that presents an al-

ternative to the notion of REST-based interfaces [16]. One of its

main advantages is its ability to define precisely the data you want,

replacing multiple REST requests with a single call [5, 6]. Since

its release, GraphQL has gained significant momentum and has

been adopted by an increasing number of users including Coursera,

Github, Neo4J, and Pinterest [9]. A core component of the GraphQL

framework is a query language for expressing the data retrieval

requests issued to GraphQL-aware Web servers. While there al-

ready exist a number of implementations of this language, a more

fundamental understanding of the properties of the language is

missing. The goal of this paper is to close this gap, which is a fun-

damental step to clarify intrinsic limitations and, more importantly,

to identify optimization opportunities of possible implementations.

To illustrate some of these limitations and optimization op-

portunities, consider the public GraphQL interface provided by

∗
This is a preprint of a paper to be published in the proceedings of TheWeb Conference

(WWW 2018).

Github [6]. Figure 1(a) shows a query over this interface and Fig-

ure 1(b) illustrates the corresponding query result.
1
This query

retrieves the login names of the owners of the first two Github

repositories that are listed for the user with login “danbri” (which

happens to be “danbri” himself in both cases
2
). As our experiments

with this public GraphQL interface show, there is an intriguing issue

with the size of a query result when we begin nesting queries. As-

sume that we extend our example into some kind of path expressions
that discover repository owners by traversing the relationships be-

tween Github repositories and their owners in increasing levels of

distance. Figure 1(a) represents the level-1 version of such a tra-

versal. The level-2 version, illustrated in Figure 1(c), retrieves the

owners of the (first two) repositories that are listed for each reposi-

tory owner in the result of the level-1 version, and so on. Figure 1(d)

shows that there is an exponential increase of the result sizes for

levels 1–7. We note that this issue is somehow acknowledged by the

Github GraphQL interface and, as a safety measure to avoid queries

that might turn out to be too resource-intensive, it introduces a few

syntactic restrictions [7]. As one such restriction, Github imposes a

maximum level of nesting for queries that it accepts for execution.

However, even with this restriction (and other syntactic restric-

tions imposed by the Github GraphQL interface [7]), Github fails

to avoid all queries that hit some resource limits when executed.

For instance, when we replace first:2 by first:5 in the queries

of our experiment, we observe not only exponential behavior of

result size growth and query execution times (cf. Figure 1(e)), but

we also receive timeout errors for the level-6 and level-7 versions

of the queries. The response messages with these timeout errors

arrive from the server a bit more than 10 seconds after issuing

the requests. Hence, Github’s GraphQL processor clearly tries to

execute these queries before their execution times exceed a thresh-

old. Developers have already embarked trying to cope with this

and similar issues [1, 20] defining ad hoc notions of “complexity”

or “cost” of GraphQL queries. As we explain in this paper these

approaches fall short on providing a robust solution for the problem

as they can fail in both directions: discarding requests in which an

efficient evaluation is possible, and allowing requests in which a

complete evaluation is too resource intensive.

Instead of trying to tackle these and other issues by ad hoc so-

lutions, we propose to study them from a formal point of view

borrowing the long tradition and tools used by the database com-

munity to study the semantics and complexity of query languages.

This paper is a first step in this direction. Our formalization and

1
All the query executions on which we report have been performed on Oct. 3, 2017.

2
When increasing the number of repositories to be considered, by changing first:2
to, say, first:10, we also find repositories with other owners.

query {
user(login: "danbri") {

repositories(first: 2) {
nodes {

owner {
login

} } } } }

(a) initial example query

data: {
user: {

repositories: {
nodes: [

{ owner: { login: "danbri" } },
{ owner: { login: "danbri" } }

]
} } }

(b) result of initial example query

query {
user(login: "danbri") {

repositories(first: 2) {
nodes { owner {

repositories(first: 2) {
nodes { owner {

login
} } } } } } } }

(c) level-2 version of the example query

(d) measurements for the example queries with first:2 (e) measurements for the example queries with first:5

Figure 1: GraphQL queries and responses over the Github GraphQL interface [6]

technical results allow us, among other things, to provide a robust

solution for the above mentioned problems.

The semantics of GraphQL queries—i.e., the definition of what

the expected result of any given query is—is given in the GraphQL

specification by means of a recursive program specified by pseudo

code. This recursion is based on an operation to resolve any so-

called “field” in a query (such as user, repositories, and owner in

our example query). Surprisingly, this operation is not fully spec-

ified and, instead, simply assumes access to an “internal function
[...] for determining the [...] value of [the] field” [5]. While the lack

of a more precise definition of this internal function may be inten-

tional (to allow for implementations of GraphQL on top of arbitrary

database back-ends), it makes a systematic analysis of the GraphQL

language unworkable. That is, without a complete formal defini-

tion it is impossible to determine properties such as the expressive

power or the computational complexity of the language. Thus, our

main conceptual contribution is a formalization of the semantics of

GraphQL. We begin by defining a logical data model that formally

captures the notion of a GraphQL graph, as well as the correspond-

ing notion of a GraphQL schema (cf. Section 2). Thereafter, based on

our data model, we formalize the semantics of GraphQL queries by

using a compositional approach (cf. Section 3) providing a normal

form that we heavily use when study the properties of the language.

As our first technical contribution we use our formalization to

study the computational complexity of GraphQL (cf. Section 4).

We study the classical decision evaluation problem and the enu-

meration problem, showing that both can be efficiently solved. In

particular, we show that the evaluation problem is complete for the

class of problems decided in Nondeterministic Logarithmic Space.

Moreover, we prove that for queries that satisfy the above men-

tioned normal form, the enumeration problem can be solved with

constant delay. This implies that a server can answer a GraphQL

query and send the response byte-by-byte while spending just a

constant amount of time between every byte sent.

We also study the problem of computing the size of a GraphQL

response (cf. Section 5), showing that it can be solved in polynomial

time. That is, even though the size of a query result can be pro-

hibitively large, one can efficiently compute the exact size without

executing the query. Our results on polynomial-time size computa-

tion plus the constant-delay enumeration provide a robust way of

tackling the issues presented by current GraphQL implementations.

In Section 6 we review the related work, briefly comparing

GraphQL with other more classical query languages. The conclu-

sions of our work are presented in Section 7. We emphasize that this

paper is a substantially extended version of a workshop paper [10]

in which we initially presented a fragment of the formalization of

the language but no result about normal forms, the complexity of

the enumeration or the size computation problems.

2 DATA MODEL
A dataset that is made available via a GraphQL interface can be

queried in terms of a so-called schema based on which the dataset is

represented implicitly as a directed, edge-labeled multigraph with

typed nodes and node properties. The nodes in this graph corre-

spond to JSON-style objects that may occur in the query results.

The schema associated with a GraphQL interface introduces a no-

tion of types for these objects. Such a type characterizes what fields

an object of the given type may have and what values are allowed

for each of these fields. The possible values can be restricted to a

specific type of scalars or objects. To define the GraphQL query

semantics formally we first need to make explicit this logical data

model assumed by GraphQL. To this end, this section formalizes

the notions of a GraphQL schema and a GraphQL graph. For each

concept of the GraphQL specification that our definitions capture,

we refer to section of the specification that introduces the concept.

2.1 GraphQL Schema
We consider three infinite countable sets: Fields (field names,

§2.5 [5]), Arguments (argument names, §2.6 [5]), and Types (type

type Starship {
id: ID
name: String
length: Float

}

interface Character {
id: ID
name: String
friends: [Character]

}

type Droid implements Character {
id: ID
name: String
friends: [Character]
primaryFunction: String

}

type Human implements Character {
id: ID
name: String
friends: [Character]
starships: [Starship]

}

enum Episode { NEWHOPE EMPIRE JEDI }

union SearchResult = Human | Droid |
Starship

type Query {
hero(episode: Episode): Character
search(text: String): [SearchResult]

}

schema {
query: Query

}

Figure 2: Example GraphQL schema in its original syntax

names, §3.1 [5]). We assume that Fields, Arguments and Types
are disjoint and that there exists a finite set Scalars (scalar type
names, §3.1.1 [5]) which is a subset of Types. We also consider a

set Vals of scalar values, and a function values : Scalars→ 2
Vals

that assigns a set of values to every scalar type.

GraphQL schemas and graphs are defined over finite subsets

of the above sets. We assume three finite sets F ⊂ Fields, A ⊂
Arguments, and T ⊂ Types, where T is the disjoint union of OT (ob-
ject types, §3.1.2 [5]), IT (interface types, §3.1.3 [5]), UT (union types,
§3.1.4 [5]) and Scalars, and we denote by LT the set {[t] | t ∈ T}
of list types constructed from T (cf. §3.1.7 [5]). We now have every-

thing necessary to define a GraphQL schema over (F, A, T).

Definition 2.1. A GraphQL schema S over (F, A, T) is composed

of the following five assignments:

• fieldsS : (OT ∪ IT) → 2
F
that assigns a set of fields to every

object type and every interface type,

• argsS : F→ 2
A
that assigns a set of arguments to every field,

• typeS : F ∪ A → T ∪ LT that assigns a type or a list type

to every field and argument, where arguments are assigned

scalar types; i.e., typeS (a) ∈ Scalars for all a ∈ A,
• unionS : UT → 2

OT
that assigns a nonempty set of object

types to every union type,

• implementationS : IT → 2
OT

that assigns a set of object

types to every interface.

Additionally, S contains a distinguished type rootS ∈ OT called the

(query) root type.

To avoid an overly complex formalization, our definition of a

GraphQL schema does not capture the additional notions of input
types (cf. §3.1.6 [5]) and non-null types (cf. §3.1.8 [5]). Moreover,

since we are mostly interested in queries, we do not consider muta-
tion types (§3.3 [5]). A GraphQL schema is consistent if every object

type that implements an interface type i defines at least all the fields
that i defines. Formally, S is consistent if fieldsS (i) ⊆ fieldsS (t)
for every t ∈ implementationS (i). We assume that all GraphQL

schemas in this paper are consistent.

Example 2.2. Figure 2 illustrates a GraphQL schema for data

about Star Wars movies in the original syntax [5]. This a simplified

version of the schema used in one of the official learning resources

for GraphQL (see http://graphql.org/learn/schema/). In terms of our

formalization, we have a schema S over (F, A, T) with

F = {id, name, length, friends, primaryFunction, starships,
hero, search},

A = {episode, text}, and T = OT ∪ IT ∪ UT ∪ Scalars such that

IT = {Character}, UT = {SearchResult},

OT = {Starship, Droid, Human, Query},

Scalars = {ID, String, Float, Episode}.

As we can see in Figure 2, in the original syntax, object types are

defined using the keyword type, and interface and union types with
keywords interface and union, respectively. The values for the
scalar types are implicit in their names (String, Float) except for
IDwhich is a special type used for unique identifiers (cf. §3.1.1.5 [5]),
and Episodeswhich is an enum type such that values(Episodes) =
{NEWHOPE, EMPIRE, JEDI}. Regarding the functions that compose S

we have that fieldsS defines the assignments:

Starship→ {id, name, length},

Character→ {id, name, friends},

Droid→ {id, name, friends, primaryFunction},

Human→ {id, name, friends, starships},

Query→ {hero, search},

function argsS defines the assignments:

hero → {episode}, search → {text},

and typeS defines the assignments:

id → ID, friends → [Character],
name → String, starships → [Starship],

length → Float, primaryFunction → String
episode → Episode, hero → Character,

text → String, search → [SearchResult].

The interface and union types are given as follows:

implementationS (Character) = {Human, Droid},
unionS (SearchResult) = {Human, Droid, Starship}.

Finally the root type is defined as rootS = Query. In Figure 2 this is

defined as the type of the query field under a special schema type.

2.2 GraphQL Graphs
We now define the notion of a GraphQL graph by using the afore-

mentioned domain (F, A, T). Informally, a GraphQL graph is a di-

rected, edge-labeled multigraph. Each node in the graph is associ-

ated with an object type from OT and a set of properties (key-value

pairs). The key names of these properties, as well as the edge labels,

consist of a field name from F and a (possibly empty) set of argu-

ments, where such an argument is a pair consisting of an argument

name from A and a corresponding value. The value of each node

property is either a single scalar value or a sequence of scalars.

Formally, we define the notion of a GraphQL graph as follows.

Definition 2.3. A GraphQL graph, or simply graph, over (F, A, T)
is a tuple G = (N ,E,τ , λ, r) with the following elements:

• N is a set of nodes,

• E is a set of edges of the form (u, f[α],v) where u,v ∈ N ,

f ∈ F, and α is a partial mapping from A to Vals,
• τ : N → OT is a function that assigns a type to every node,

• λ is a partial function that assigns a scalar value v ∈ Vals or

a sequence [v1 · · · vn] of scalar values (vi ∈ Vals) to some

pairs of the form (u, f[α]) where u ∈ N , f ∈ F, and α is a

partial mapping from A to Vals,
• r ∈ N is a distinguished node called the root node.

http://graphql.org/learn/schema/

StarshipHuman
u x

Droid
v

Human
w

friends

friends

friends

hero[episode:EMPIRE]

search[text:L]

search[text:L]

friends

r
Query

hero[episode:NEWHOPE]

name:Falcon

name:R2-D2

id:3000

primaryFunction:Astromech

name:Luke

id:2001

id:1000
length:34.37

name:Han
id:1002

starships

Figure 3: Example GraphQL graph

Example 2.4. Figure 3 illustrates a graph G = (N ,E,τ , λ, r) over
the domain (F, A, T) as given in Example 2.2. G is a simplified ver-

sion of the graph used in one of the official learning resources for

GraphQL (see http://graphql.org/learn/schema/). In this case we have

N = {r ,u,v,w,x } and E contains several edges, including edges

(r , hero[epsiode : EMPIRE],u) and (u, friends,w). The type as-

signment τ is depicted inside every node. For instance τ (v) = Droid.
Function λ is shown as a box beside every node. For instance

λ(w, name) = Han, and λ(x , length) = 34.37.

Observe that Definition 2.3 introduces the notion of a GraphQL

graph independent of any particular GraphQL schema. However,

for the purpose of defining queries over such a graph, the graph is

assumed to conform to a given schema. Informally, the conditions

of conformance to a schema S imposes on a graph G are summa-

rized as follows: For every edge (u, f[α],v), field f is among the

field names for the type of u (f ∈ fieldsS (τ (u))). The type that S
associates with f must match the type of v (typeS (f) = τ (v), or
τ (v) ∈ implementationS (typeS (f)), or τ (v) ∈ unionS (typeS (f))),
and if this type is not a list type, then v is the only node connected

to u by an edge with label f[α]. Moreover, for every argument map

a : v in α , argument name a must be among the arguments that S

associates with f (a ∈ argsS (f)), and value v must be of the type

associated with a (v ∈ values(typeS (a)). In addition to these condi-

tions for the edges in E, there exist similar conditions for the node

properties defined by function λ. Finally, the type of the root node
should be the root type of S (τ (r) = rootS). With these intuitions,

one can see that the graph in Example 2.4 conforms to the schema

described in Example 2.2. Providing a detailed definition of these

conditions is straightforward. Due to space limitations, we omit

the definition in this paper. Finally, the size of graph G , denoted by

|G |, is the total number of edges and node properties in G.
We emphasize that our notion of a GraphQL graph is mostly a

logical construct needed to base our work on a well-defined foun-

dation. In practice, GraphQL interfaces typically provide access to

an underlying database which may be stored using relational tech-

nology or in a NoSQL system. The actual data exposed via such an

interface can be conceived of as graph-based view of the underlying

database. GraphQL graphs are an abstraction of such views that al-

lows us to formalize and study the GraphQL language independent

of the technologies used to implement GraphQL interfaces.

3 GRAPHQL LANGUAGE
In this section we provide a formal definition of the GraphQL query

language, defining its syntax and semantics over the data model

that we introduced in the previous section. Before going into the

hero[episode:EMPIRE] {
name
friends {

on Human {
humanFriend:name
starships {

starship:name
length

}
}
on Droid {

droidFriend:name
primaryFunction

}
}

}

hero:{
name:Luke
friends:[{

humanFriend:Han
starships:[{

starship:Falcon
length:34.37

}]
}
{

droidFriend:R2-D2
primaryFunction:Astromech

}]
}

Figure 4: GraphQL query (left) and response object (right)

formal definitions, we give some intuition of the expressions based

on which GraphQL queries may be constructed and how these

expressions are evaluated. The most basic construction are expres-

sions of the form f[α] (cf. §2.5 [5]). Informally, when evaluated

over a graph, such an expression can be used to match node prop-

erties whose name has the same form. Then, assuming the value

of the property is a scalar value v, the result of the evaluation is

a string of the form f:v. An alternative to the construction f[α]
is ℓ:f[α] which captures the notion of “field aliases” (cf. §2.7 [5]).
Such aliases can be used to rename the field names that appear in

the query result. To match edges, expressions of the form f[α]{φ}
can be used, where φ is a subquery to be evaluated in the context of

the target nodes. Then, for the case of a single matching edge, the

result is a string of the form f:{ρ}with ρ being the string resulting
from the evaluation of the subquery φ. On the other hand, if the

number of matching edges may be greater than one (which may be

the case if the type associated with field f is a list type), then the

result string is of the form f:[{ρ1} · · · {ρn}]. Expressions of the
form f[α]{φ} can also be prefixed with a field alias: ℓ:f[α]{φ}.

Our query syntax introduces two more constructions: on t{φ}
and φ1 · · ·φn . While the latter is simply an enumeration of multiple

subexpressions whose results are meant to be concatenated, the

former captures the notion of a “type condition” that is given by

what the GraphQL specification refers to as an “inline fragment” (cf.
§2.8.2 [5]). Hence, t is either an object type, an interface type, or

a union type, and φ is a subquery to be evaluated only for nodes

whose associated type is compatible with t.
Readers who are familiar with the query syntax introduced in

the GraphQL specification may notice that we do not capture a

number of additional language features, namely, (non-inline) “frag-
ments” (§2.8 [5]), “variables” (§2.10 [5]), and “directives” (§2.12 [5]).
We emphasize that these features are merely syntactic sugar that

a query parser may resolve by using the features captured in the

presented syntax. The following definition formalizes our syntax

of GraphQL queries.

Definition 3.1. A GraphQL query, or simply query, over (F, A, T)
is an expression φ constructed from the following grammar where

[,], {, }, :, and on are terminal symbols, t ∈ OT ∪ IT ∪ UT, f ∈ F,
ℓ ∈ Fields, and α represents a partial mapping from A to Vals.

φ ::= f[α] | ℓ:f[α] | on t{φ} |

f[α]{φ} | ℓ:f[α]{φ} | φ · · ·φ

For the sake of conciseness (and in correspondence with the

original GraphQL syntax), for sub-expressions of the form f[α]
with α the empty mapping, we just write f. Figure 4 (left) shows an
example GraphQL query over the domain (F, A, T) in Example 2.2.

http://graphql.org/learn/schema/

In the GraphQL specification [5], queries begin with the op-

tional keyword query followed by an expression as the one in-

troduced in Definition 3.1. That is, the query in Figure 4 (left) is

written as query{hero[episode:EMPIRE]{ · · · }} (see also Fig. 1).

We dropped the query keyword to have a simpler recursive syntax.

A notion that we shall use heavily in the next sections is the size

of a query φ, denoted by |φ |, that we define as the number of field

selections and types occurring in φ. This can be formally defined

by recursion as follows:

• |f[α]| = |ℓ:f[α]| = 1

• |on t{φ}| = |f[α]{φ}| = |ℓ:f[α]{φ}| = 1 + |φ |
• |φ1φ2 · · ·φk | = |φ1 | + |φ2 | + · · · + |φk |

For instance, the query in Figure 4 (left) has size 11.

As for the case of GraphQL graphs, there is a notion of whether

a query conforms to a schema S. For instance, if a query begins

with an expression of the form f{g{φ}}, then f must be a field

of the root type in S (f ∈ fieldsS (rootS)), g must be a field of the

type assigned to f (g ∈ fieldsS (typeS (f))), and so on. Due to space

limitations we do not include all the formal requirements here, but

they are as straightforward to define as for the case of queries.

As a last preliminary for formalizing the semantics of GraphQL

queries we require a definition of the notion of a result that a

GraphQL query may return.

Definition 3.2. A GraphQL response object is an expression ρ
constructed from the following grammar where {, }, [,], :, and
null are terminal symbols, ε denotes the empty word, ℓ ∈ Fields,
and v, v1, ... , vn ∈ Vals:

ρ ::= ℓ:v | ℓ:[v1 · · · vn] | ℓ:null |

ℓ:{ρ} | ℓ:[{ρ} · · · {ρ}] | ρ · · · ρ | ε

Figure 4 (right) shows an example response object. Such objects

are strings over alphabet Σ = Fields ∪ Vals ∪ {{, }, [,], :, null},
and thus we can define the size of a response object ρ, denoted
by |ρ |, simply as the number of symbols of Σ occurring in ρ. For
instance, the size of the response object in Figure 4 is 36. Similarly as

for the case of queries, response objects in the official specification

begin with the keyword data (see Fig. 1(b)). We have also dropped

that keyword to have a simpler syntax.

As a final note on the syntax of queries and response objects,

notice that both have a tree structure. Thus, one can intuitively talk,

for example, about root or leaf fields of a query or a response object,
or even about children of a field in a query.

Field collection. Before going into the semantics we need the

additional notion of collecting fields (cf. §6.3.2 [5]). The main idea is

that repeated fields in a query/response should not be considered

twice. For instance, a GraphQL query will never result in a response

object of the following form:

droid:{ name:C3PO } ship:{ length:30.0 } droid:{ pF:Protocol }.

Instead, if this is the data to be returned, the response object will be:

droid:{ name:C3PO pF:Protocol} ship:{ length:30.0 }.

Notice how the two occurrences of the field droid are merged

collecting the subfields name and pF into a single group while main-

taining their relative order. The example should clarify why this

process is called field collection in the GraphQL specification. To

formalize this we use a recursive function collect(·) over response
objects. For the sake of space we do not include the details of this

function, but it can be easily implemented as a recursive procedure

over a response object following the intuition in the example above.

We are now ready to introduce the semantics of GraphQL queries.

In what follows we always assume a fixed given schema S.

Definition 3.3. Let G = (N ,E,τ , λ, r) be a graph and φ a query,

both conforming to a schema S over (F, A, T). The evaluation of φ
over G from node u ∈ N , denoted by JφKuG , is a GraphQL response

object that is defined recursively as shown in Figure 5. The evalua-
tion of φ over G, denoted by JφKG , is simply JφKrG .

Example 3.4. Consider the GraphQL graphG in Example 2.4. Let

φ and ρ be the query and the response object in Figure 4, respec-

tively. Then, we have that ρ = JφKG .

Equivalences and normal forms
Letφ1 andφ2 be queries that conform to a schemaS. We say thatφ1
and φ2 are equivalent, denoted by φ1 ≡ φ2, if for every graphG that

conforms toS it holds that Jφ1KG = Jφ2KG . We need two additional

technical notions that will prove to be useful for algorithms and

complexity analysis.

Definition 3.5. A GraphQL query φ is in ground-typed normal
form if it satisfies the following grammar, where t ∈ OT.

φ ::= ψ · · ·ψ | χ · · · χ
ψ ::= on t { χ · · · χ }
χ ::= f[α] | ℓ:f[α] | f[α]{ φ } | ℓ:f[α]{ φ }

That is, intuitively, φ is in ground-typed normal form if the fol-

lowing three conditions are satisfied: (1) for every expression of the

form on t { ... } that occurs in φ, it holds that t ∈ OT, (2) expres-
sions of the form on t { ... } do not occur mixed with regular field

selections, and (3) an expression on t′ { ... } does not occur imme-

diately inside another on t { ... } expression. Finally, we introduce
a notion that focuses on possible redundancy in GraphQL queries.

Definition 3.6. A GraphQL query φ is non-redundant if it satisfies
the following condition. For every subexpression of φ of the form

φ1 · · ·φk there are no indexes i, j ∈ {1, ... ,k } such that i , j and

• φi = φ j = f[α], or
• φi = φ j = ℓ:f[α], or
• φi = f[α]{β} and φ j = f[α]{γ}, or
• φi = ℓ:f[α]{β} and φ j = ℓ:f[α]{γ}, or
• φi = on t {β} and φ j = on t {γ}.

Example 3.7. The query in Figure 4 is a non-redundant query in

ground-typed normal form.

Theorem 3.8. For every query φ that conforms to a schema S
there exists a non-redundant query φ ′ in ground-typed normal form
such that φ ≡ φ ′.

The proof of the previous theorem can be obtained by applying

the equivalence rules defined in the following proposition.

Proposition 3.9. The following equivalences hold for every sub-
query of queries that conform to a schema S.

(1) if χ = f[α] or χ = ℓ:f[α] then

χ φ1 · · ·φi χ φi+1 · · ·φk ≡ χ φ1 · · ·φiφi+1 · · ·φk

Jf[α]KuG =
{

f:λ(u, f[α]) if (u, f[α]) ∈ dom(λ)
f:null else.

Jℓ:f[α]KuG =
{
ℓ:λ(u, f[α]) if (u, f[α]) ∈ dom(λ)
ℓ:null else.

Jf[α]{φ}KuG =



f:[{JφKv1

G } · · · {JφKvkG }] if typeS (f) ∈ LT and {v1, ... ,vk } = {vi | (u, f[α],vi) ∈ E}
f:{ JφKvG } if typeS (f) < LT and (u, f[α],v) ∈ E
f:null if typeS (f) < LT and there is no v ∈ N s.t. (u, f[α],v) ∈ E

Jℓ:f[α]{φ}KuG =



ℓ:[{JφKv1

G } · · · {JφKvkG }] if typeS (f) ∈ LT and {v1, ... ,vk } = {vi | (u, f[α],vi) ∈ E}
ℓ:{ JφKvG } if typeS (f) < LT and (u, f[α],v) ∈ E
ℓ:null if typeS (f) < LT and there is no v ∈ N s.t. (u, f[α],v) ∈ E

Jon t{φ}KuG =



JφKuG if t ∈ OT and τ (u) = t, or t ∈ IT and τ (u) ∈ implementationS (t), or
t ∈ UT and τ (u) ∈ unionS (t)

ε in other case.

Jφ1 · · ·φk KuG = collect(Jφ1KuG · · · Jφk KuG)

Figure 5: Semantics of a GraphQL query.

(2) if χ = f[α] or χ = ℓ:f[α] then

χ{β} φ1 · · ·φi χ{γ} φi+1 · · ·φk ≡

χ{βγ} φ1 · · ·φiφi+1 · · ·φk

(3) on t { φ1 · · ·φk } ≡ on t { φ1 } · · · on t { φk }
(4) on t { on t { φ } } ≡ on t { φ }
(5) If implementsS (t) = {t1, ... , tk} then

on t { φ } ≡ on t1 { φ } · · · on tk { φ }

(6) If unionS (t) = {t1, ... , tk} then

on t { φ } ≡ on t1 { φ } · · · on tk { φ }

(7) If t1, t2 ∈ OT and t1 , t2 then

on t1 { on t2 { φ } } ≡ ε

In the rest of the paper we assume that every GraphQL query is a

non-redundant query in ground-typed normal form. An important,

though simple observation is that if a query does not mention

any expression of the form on t { ... }, then one can obtain an

equivalent non-redundant query in ground-typed normal in linear

time (by just using equivalences (1) and (2)). For queries that do

mention on t { ... } a naive application of the above rules can lead

to a query of exponential size (rules (5) and (6)). We left for future

work a precise study of the complexity of the transformation.

One of the main properties of queries that satisfy the conditions

presented in this section is that they produce a unique response

object without the need of the collect(·) operator. More formally,

let ⟨⟨φ⟩⟩G be an evaluation function for queries defined in exactly

the same way as JφKG in Definition 3.3 but replacing the last rule in

Figure 5 by ⟨⟨φ1 · · ·φk ⟩⟩
u
G = ⟨⟨φ1⟩⟩

u
G · · · ⟨⟨φk ⟩⟩

u
G , that is, without using

collect(·). It is not difficult to prove that if φ is a non-redundant

query in ground-typed normal form, then JφKG = ⟨⟨φ⟩⟩G for every

graph G. We shall exploit this property in the next sections.

4 THE COMPLEXITY OF GRAPHQL
In this section we study the complexity of two classical decision

problems in the context of GraphQL, namely, the evaluation prob-

lem and the enumeration problem, showing that both can be solved

efficiently. For this analysis we make the following assumption: Let

G be a GraphQL graph,u be a node, and f[α] be an edge label. We as-

sume that one can access the list of f[α]-neighbors ofu in timeO (1),
and one can access the f[α]-property of a node in time O (1). Al-
though this is a standard assumption for graph databases in a RAM

computational model, we stress that a GraphQL graph is usually

implemented as a view over another data source and, thus, the time

required to access neighbors and data may depend on the underly-

ing data storage. Our assumption allows us to study the two decision

problems independent of implementation-specific peculiarities.

Classical query languages, such as SQL or Relational Algebra,

take as inputs a query and a database and produce a set of tuples as

output. For these languages the standard way of defining a decision

problem is the following: given a query Q , a database D, and a

candidate tuple t , check if t is part of the evaluation of Q over

D [21]. In contrast to classical languages, the result of a GraphQL

query is not a set of tuples but a single response object. To define a

similar decision problem for GraphQL, we consider the data values

occurring in response objects. For example, in the object

droid:{ name:C3PO pF:Protocol} ship:{ length:30.0 }

the values that occur are C3PO, Protocol and 30.0. Formally, we

define the following decision problem.

Problem: GraphQL-Eval

Input: GraphQL query φ, graph G, and value v ∈ Vals
Ouput: Does v occur in JφKG?

We next show that GraphQL-Eval is complete for the class of

problems that can be decided in nondeterministic logarithmic space.

Theorem 4.1. GraphQL-Eval is NL-complete.

Proof. (Sketch) The proof of the membership in NL is based on

characterizing the evaluation process as several reachability tests.

Recall first that a GraphQL query can be seen as a tree. Moreover,

one can traverse a query by following its tree structure, that is,

going from one label up to its parent, down to one of its children, or

left/right to its siblings, with a logspace machine by using standard

techniques (see e.g. [8] Section 2.5). Thus, to show membership

in NL we first guess a position, say p, in φ corresponding to an

expression of the form f[α] or ℓ:f[α]. We also guess a node, say

u, inG . Notice that to store p and u we only need logarithmic space.

The intuition is that p represents the field in φ that when evaluated

from u produces the value v. This last property holds if and only

if either λ(u, f[α]) = v or λ(u, f[α]) is a list containing v. Both
options can be checked by simply inspecting G. To complete the

proof we consider the path P (sequence of field names and type

restrictions) in the tree representation of φ that leads to position

p. The last step in the proof is to check that node u can be reached

from the root node in G by following path P which can be done in

NL by a standard reachability test.

NL-hardness follows from the reachability problem in directed

graphs. Given a directed graph G with k nodes and two nodes

u and v , we create a GraphQL graph G ′ from G by setting u as

the root node, and adding a field label e to every edge. Moreover,

for every node in G ′ we add a property a with value 1 except

for node v in which a is associated with value 2. Then, we con-
sider the sequence of queries constructed recursively as α1 = a
and αi = a e{αi−1}, and the query φ = αk . That is, φ is the

query a e{a e{a e{ · · · }}}, where a is repeated k times and e
repeated k − 1 times. It is not difficult to argue that G ′ and φ can

be constructed from G by using only logarithmic space. Moreover,

value 2 occurs in JφKG′ if and only ifv is reachable from u inG . □

Although it is theoretically interesting to pinpoint the exact

complexity of the GraphQL evaluation problem, the previous result

does not give a specific hint on how the whole evaluation of a

query can be actually computed in practice. We next prove that for

non-redundant queries in ground-typed normal form, the complete

evaluation can be done in time linear with respect to the size of

the output. Actually, in proving this result we show something

even stronger: the complete evaluation of a GraphQL query can

be constructed symbol-by-symbol with only constant-time delay

between each symbol.

Theorem 4.2. Let G be a GraphQL graph and φ a non-redundant
query in ground-typed normal form. Then, ρ = JφKG can be computed
such that ρ is produced symbol-by-symbol with constant-time delay
between each symbol.

Proof. (Sketch) We consider a fixed GraphQL schema S. Let φ
be a non-redundant query in ground-typed normal form, and G be

a graph, both conforming to S. We describe a recursive algorithm

Enumerate that receives a subquery of φ and a node u. The initial
call is Enumerate(φ, r) where r is the root node. For the recursive
case we assume that φ follows the grammar in Definition 3.5. Thus,

consider a call Enumerate(χ ,u) with χ a subquery of φ given

by the third rule in Definition 3.5. Assume first that χ is of the

form f[α]. If there is a value V = λ(u, f[α]) in G, then Enumerate

outputs f:V, otherwise it outputs f:null, and returns. Assume now

that χ is of the form f[α]{φ ′}. Enumerate first outputs expression
f: and then it proceeds depending on the following cases:

(1) If typeS (f) ∈ LT, then Enumerate outputs the symbol [.
Next, for every v such that (u, f[α],v) ∈ E, it first outputs
the symbol {, then calls Enumerate(φ ′,v), and then outputs

the symbol }. Finally, it outputs the symbol] and returns.

(2) If typeS (f) < LT, then we have two cases depending on

whether there is a v such that (u, f[α],v) ∈ E or not. If

there is no such v , then Enumerate simply outputs null
and returns. Otherwise it first outputs the symbol {, then
calls Enumerate(φ ′,v), and then outputs the symbol }.

The cases in which χ is of the form ℓ:f[α] or ℓ:f[α]{φ ′} are

similar but Enumerate outputs first ℓ: instead of f:. Notice that
in all these cases, Enumerate is just following the semantics of

GraphQL as defined in Definition 3.3. The really important cases

are when we have expressions constructed from the first or sec-

ond rule in Definition 3.5. Hence, consider a subquery of the form

χ1χ2 · · · χk where every χi is constructed from the third rule in

Definition 3.5. Given that φ is non-redundant and in ground-typed

normal form, we do not need the collect(·) operator and, thus,
Enumerate(χ1χ2 · · · χk ,u) can simply call Enumerate(χi ,u) one
by one for every i = 1, 2, ... ,k and produce the desired output.

Finally, consider a subquery ψ1ψ2 · · ·ψk where every ψi is of the
form on ti {φi}. Given that φ is non-redundant we know that

ti , tj for i , j . This implies that k is a constant value bounded by

the number of types mentioned in S. Moreover, since φ is ground

typed, we have ti ∈ OT for every i . With these observations the

call Enumerate(ψ1ψ2 · · ·ψk ,u) can proceed as follows. Search for

an index i such that τ (u) = ti . If such an index i exists, then call

Enumerate(φi ,u). If the index does not exist, just return.
To see that there is a constant-time delay between any two

symbols produced by Enumerate, first notice that every call, except

for the last case considered above, outputs at least one symbol as

soon as it is called and at least one symbol just before it returns.

Moreover, every recursive call to Enumerate is performed after a

constant time upon its parent call. Finally, to consider the last case

in the previous paragraph, given that φ is non-redundant and in

ground-typed normal form we have that an expression of the form

on t′ { ... } does not occur immediately inside another on t { ... }
expression. This ensures that there are no two consecutive calls to

Enumerate that do not produce any output. □

Computing all the components of the evaluation is usually called

the enumeration problem [3, 13, 17]. Thus, Theorem 4.2 shows that

the enumeration problem for GraphQL can be solved with constant

delay. As an immediate corollary we obtain the following.

Corollary 4.3. LetG be a GraphQL graph andφ a non-redundant
query in ground-typed normal form. Then, ρ = JφKG can be computed
in time linear with respect to |ρ |.

5 THE SIZE OF A GRAPHQL RESPONSE
Based on our results in the previous section, we may conclude

that one of the main sources of complexity in evaluating GraphQL

queries is the size of a query response object. In this section we

prove that even for very simple cases this object might be prohibi-

tively large. We begin by stating an exponential upper bound.

Proposition 5.1. For every GraphQL queryφ and GraphQL graph
G it holds that JφKG is of size O (|G | |φ |).

The upper bound can be proven by a simple induction argument.

We next show that this upper bound is tight.

Proposition 5.2. For every n ≥ 0, there exists a graph G and a
query φ such that G is of size 6 and φ is of size 2(n + 1), but the size
of JφKG is greater than 2

n .

Proof. Let G be the following graph with root node r .

Alice

knows

knows

knows

knows

start
r v

w

x

name :

Consider now the queries given by the recurrence α0 = name,
and αi = knows { knows { αi−1 } } for every i > 0. Define φ as

start {αn }. Then, the size of φ is 2n + 2 but the evaluation of φ
over G is of size exponential in n; more precisely, the name Alice
occurs 2

n
times in JφKG . □

One may think that the previous result is produced solely by the

presence of directed cycles in the graph. As the next result shows,

one can also obtain an exponential blow up even for acyclic graphs.

Proposition 5.3. For every n ≥ 0, there exists an acyclic graphG
and a query φ such thatG is of size 4n + 2 and φ is of size 2n + 2, but
the size of JφKG is greater than 2

n .

Proof. Let G be the following graph with root node r .

v1
name :

Alicer
start

v0 v2

· · ·

vn· · ·

· · ·

kn
ow
s

kn
ow
s

kn
ow
sknows

knows

knows kn
ow
s

kn
ow
sknows

knows

knows

kn
ow
s

w1

x1

w2

x2

Furthermore, let φ be as defined in the proof of Proposition 5.2.

Then G is of size 4n + 2, φ is of size 2n + 2, but JφKG is of size

exponential in n; the name Alice occurs 2
n
times in JφKG . □

A natural question at this point is how can we avoid obtaining

a response object of exponential size. We prove next that we have

at least two options: bound the number of different walks in the

graph, or bound the nesting depth of queries. A walk in a graph

is similar to a path but it is allowed to repeat edges. Notice that

this implies that a graph with a cycle has an unbounded number of

walks. The nesting depth of a query can be defined intuitively as the

maximum number of nested curly braces in the query expression.

For instance, the query in Figure 4 has nesting depth 4.

Theorem 5.4. LetG be a graph with root node r , and φ a GraphQL
query. Let K be a constant value not depending on the size of G or φ.
Consider the following two properties.

(1) For every node v in G the number of different walks from r to
v is bounded by K .

(2) The nesting depth of φ is bounded by K .

For G and φ satisfying either (1) or (2) we have that the evaluation
JφKG is of size O (|G |K · |φ |).

Proof. (Sketch) For case (1), let ρ = JφKG . We know that every

data value in ρ corresponds to a property of some node in G and,

moreover, every path in ρ corresponds to a walk inG from the root

node. Thus, the maximum number of data values appearing in ρ is

bounded by |G |K . Furthermore, for every such value, the length of

its path in ρ is bounded by |φ |, which gives us theO (|G |K ·|φ |) bound.
For case (2) the result follows from a simple induction argument. □

Property (2) is exactly one of the restrictions that the GraphQL

interface of Github imposes to ensure a reasonable output size (see

Sec. 1) [7]; there also exists a software library [20] that can be used to

integrate the same type of restriction into any other GraphQL server.

While property (1) or property (2) may be applied as a restriction

to avoid exponential blow up of query results, we emphasize that

both properties are more restrictive than necessary. That is, there

are cases in which the properties are not satisfied but query results

can still be of polynomial size only. For instance, we recall our ini-

tial Github experiment (cf. Sec. 1) where the owner of some of the

Github repositories listed for a Github user with login “danbri” was

“danbri” himself. Hence, the data exposed via Github’s GraphQL

interface contains cycles and, thus, does not satisfy property (1).

Now, for the sequence of queries in our experiment (with the level-1

and the level-2 versions illustrated in Figures 1(a) and 1(c), respec-

tively), consider a variation of the queries that uses first:1 (instead

of first:2 or first:5). It is easy to see that the result size of the

so-changed queries grows linearly with the level of the queries.

Hence, for these queries we may permit an arbitrarily deep nesting

without having to expect an exponential result size blow up. In this

case, enforcing property (2) is too restrictive.

In addition to restricting the nesting depth of queries, other ap-

proaches are used in practice to identify queries whose computation

could be too resource intensive. For instance, Github combines the

nesting-depth restriction (using a K of 25) with the following re-

striction. For every subquery of the form f[α]{φ} or ℓ:f[α]{φ}
for which the type of field f is a list type (i.e., typeS (f) ∈ LT), the
arguments α must contain either the argument named first or the

argument named last, with a value that is an integer from 1 to 100.

Moreover, based on these argument values, the Github GraphQL

interface computes the maximum number of possible result nodes

at each level of nesting depth of a given query. Queries for which

this number is greater than 500,000 at some level are rejected [7].

Note that this restriction has not been sufficient to prevent the

overly resource intensive attempt to execute the level-6 and the

level-7 version of the test queries in our experiment in which we

used first:5 (i.e., Figure 1(e)). On the other hand, the restriction

may also be too restrictive in various cases. For instance, there may

be a query for which the maximum number of possible result nodes
at some level of nesting depth is greater than 500,000, but if the

query would be executed, the actual number of result nodes may

turn out to be significantly smaller and not cause any trouble at all.

We found two more software libraries [1, 14] that aim to estimate

some notion of “complexity” or “cost” of GraphQL queries. These

estimation approaches take into account different cost factors that

a user may associate with the various elements of the schema used.

However, these approaches suffer from the same problem as the

restrictions imposed by Github’s GraphQL interface: They may

easily overestimate the cost of a query by a large degree.

Computing the exact size of a GraphQL response. As shown in

Theorem 5.4, in order to avoid returning response objects of expo-

nential size, GraphQL service providers must impose severe restric-

tions on the structure of the queries or the data. Moreover, these

restrictions can fail in both directions: discarding settings in which

an efficient evaluation is possible and allowing settings in which

a complete evaluation is too resource intensive. Fortunately, we

can give a more elegant solution by showing that the exact size

of the complete evaluation of a GraphQL query can be computed

efficiently without the need of evaluating the whole query. We

formalize this result in the following theorem.

Theorem 5.5. Let G be a GraphQL graph and φ a non-redundant
query in ground-typed normal form. The size of JφKG can be computed
in time O (|G | · |φ |).

To prove the theorem we present a dynamic programming strat-

egy in Algorithms 1 and 2. Let φ be a query and G a graph. The

idea of procedure Label in Algorithm 2 is to label every node u
with all subqueriesψ of φ for which we already know the size of

Jψ KuG . In that way we never visit a node twice for the same sub-

query. We maintain two structures: labels[u] to store (pointers to)
the subqueries, and size[u,ψ] to store the size of Jψ KuG . To briefly

illustrate how the algorithm works, consider the following graph

g

f

v wu

e

a:1

and query φ given by e { g { a } } f { g { a } }. As-
sume that at some point during the execution of Label we visitw
with subquery a for the first time. Then, we store a in labels[w]

(line 2 in Algorithm 2) and set size[w, a] to 3 (line 5) because

the evaluation is a:1, which has three symbols. Assume now that

we visit v with subquery g{a}. We first store this expression in

labels[v] and we recursively call Label(G,w, a) (line 12) because
(v, g,w) ∈ E. Given that a ∈ labels[w], the process immediately

returns without any additional computation (line 1). Next, we incre-

ment size[v, g{a}] with size[w, a]+2 = 5 (line 13), and finally add

2 (line 18) to obtain size[v, g{a}] = 7, which is exactly the size of

the evaluation g:{a:1} = Jg{a}KvG . With a similar analysis we ob-

tain that the algorithm produces the value size[u, e{g{a}}] = 11,

which is the number of symbols in e:{g:{a:1}}. What is more

interesting is the call to Label with arguments u and f{g{a}}. No-
tice that this call produces a recursive call to Label(G,v, g{a}),
but since g{a} ∈ labels[v], we already have the correct size in

size[v, g{a}] and we do not need to do any additional computation.

Finally, the value size[v, g{a}] = 7 is used to set size[u, f{g{a}}]
to value 11. All this computation can be used to obtain the size of

JφKuG which is size[u, e{g{a}}] + size[u, f{g{a}}] = 22 (line 30)

which is the number of symbols of e:{g:{a:1}} f:{g:{a:1}}. Al-
gorithm 1 initializes all the needed structures and makes the initial

call with the whole query and the root node.

To see that Algorithm 1 works in time O (|G | · |φ |) just notice
that the number of subqueries is linear with respect to the query,

Algorithm 1 GraphQLSize(G,φ)

Require: non-redundant φ in ground-typed normal form

1: for all node u in G do
2: labels[u] := ∅
3: for all ψ sub expression of φ do
4: size[u, ψ] := 0

5: end for
6: end for
7: Let r be the root node in G
8: Label(G, r, φ)
9: return size[r, φ]

Algorithm 2 Label(G,u,φ)

1: if φ < labels[u] then
2: labels[u] := labels[u] ∪ {φ }
3: if φ = f[α] or φ = ℓ: f[α] then
4: if (u, f[α]) ∈ dom(λ) then
5: size[u, φ] := |λ (u, f[α]) | + 2
6: else
7: size[u, φ] := 3

8: end if
9: else if φ = f[α]{φ′} or φ = ℓ: f[α]{φ′} then
10: V := {v | (u, f[α], v) ∈ E }
11: for all v in V do
12: Label(G, v, φ′)
13: size[u, φ] += size[v, φ′] + 2
14: end for
15: if typeS (f) ∈ LT then
16: size[u, φ] += 4

17: else if typeS (f) < LT and |V | , 0 then
18: size[u, φ] += 2

19: else
20: size[u, φ] := 3

21: end if
22: else if φ = on t {ψ} then
23: if τ (u) = t then
24: Label(G, u, ψ)
25: size[u, φ] := size[u, ψ]

26: end if
27: else if φ = φ1 · · ·φk then
28: for all i ∈ {1, ... , k } do
29: Label(G, u, φi)
30: size[u, φ] += size[u, φi]
31: end for
32: end if
33: end if

and every node is visited at most once per subquery. Moreover,

when visiting a node u, the number of steps is at most the number

of outgoing edges from u.

6 RELATEDWORK
A natural question is how our results compare with results for

classical query languages. Given the tree-like structure of GraphQL

queries, an immediate candidate to compare with is the language

of acyclic conjunctive queries (ACQs) [8, 22]. Conjunctive queries

(CQs) corresponds to the SELECT-FROM-WHERE fragment of SQL.

The further acyclic restriction in ACQs ensures the existence of a

join tree that allows one to efficiently evaluate the query [22].

In terms of expressiveness, it is not difficult to encode a GraphQL

query into an ACQ, although some special care has to be put in the

final construction of the GraphQL response object from the tuples

of values produced by an ACQ. There is no formal work on prov-

ing properties of such an encoding, but practitioners have already

started using these types ofmethodswhen evaluating GraphQL [19].

Despite the existence of an encoding, the classical ACQs complex-

ity results do not directly entail the results in this paper. In terms

of the evaluation problem, Gottlob et al. [8] have shown that for

ACQs the problem is complete for LOGCFL, which is the class of

problems that can be reduced in logarithmic space to a context-

free language [11]. Since it is believed that NL ⊊ LOGCFL, the

membership of GraphQL-Eval in NL shows an important differ-

ence in terms of complexity theory. In terms of the enumeration

problem, there is a substantial amount of work on restrictions

that allow a constant-delay evaluation for ACQs and related lan-

guages [2, 4, 12, 17, 18]. As mentioned in [17], “it is very unlikely

that constant-delay enumeration can be achieved for all queries in

ACQ” and, thus, constant-delay results impose restrictions over the

structure of the queries [2, 17] or of the queried data [4, 12, 18]. In

contrast, Theorem 4.2 proves the constant-delay result for GraphQL

in general, requiring only a specific normal form for queries.

Pichler and Skritek [15] presented a fairly complete picture of

the complexity of counting the number of tuples in the evaluation

of an ACQ. This problem is closely related to the problem of com-

puting the size of the evaluation of a GraphQL query. In [15] the

authors proved that for general ACQs the problem is intractable,

and they presented a polynomial-time algorithm for the case of

ACQs without existential variables. It is not clear that a GraphQL

query can be encoded as a single ACQ without existential variables,

but even if possible, applied to our scenario, the algorithm in [15]

would work in timeO (|G |2 · |φ |) (see Theorem 1 in [15]), while our

algorithm works in time linear with respect to |G |.

7 CONCLUSIONS
GraphQL is becoming increasingly popular as an alternative to

REST-based interfaces which have dominated theWeb-API scenario

for more than 10 years. In the spirit of classical query languages,

GraphQL uses a schema to describe the organization of the data

and a declarative query language to allow clients to access this data.

We have embarked on a systematic study of GraphQL providing

a full formalization of the semantics of its query language based

on a logical data model. Given this formalization, we have also

studied the complexity of the language, in particular the evaluation,

enumeration, and size-computation problems, showing that all of

them can be efficiently solved. While our conceptual contributions

can be used to further study the language form a theoretical point

of view, our technical contributions can also help developers to

implement more robust GraphQL interfaces on the Web.

REFERENCES
[1] 4Catalyzer Corporation. 2017. GraphQL Validation Complexity. https://

github.com/4Catalyzer/graphql-validation-complexity/. (2017).
[2] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic

Conjunctive Queries and Constant Delay Enumeration. In Computer Science Logic,
21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL,
Lausanne, Switzerland, September 11-15, 2007, Proceedings. 208–222.

[3] Nadia Creignou, Markus Kröll, Reinhard Pichler, Sebastian Skritek, and Heribert

Vollmer. 2017. On the Complexity of Hard Enumeration Problems. In Language
and Automata Theory and Applications - 11th International Conference, LATA 2017,
Umeå, Sweden, March 6-9, 2017, Proceedings. 183–195.

[4] Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. 2014. Enumerating

answers to first-order queries over databases of low degree. In Proceedings of
the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS’14, Snowbird, UT, USA, June 22-27, 2014. 121–131.

[5] Facebook, Inc. 2016. GraphQL. Working Draft, Oct. 2016. Online at http:
//facebook.github.io/graphql, retrieved on Dec. 12, 2016. (Oct. 2016).

[6] Github GraphQL API v4 2017. https://developer.github.com/v4/. (2017).
[7] Github GraphQL API v4, GraphQL resource limitations 2017. https://

developer.github.com/v4/guides/resource-limitations/. (2017).
[8] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2001. The complexity of

acyclic conjunctive queries. J. ACM 48, 3 (2001), 431–498.

[9] GraphQL Users 2017. http://graphql.org/users/. (2017).
[10] Olaf Hartig and Jorge Pérez. 2017. An Initial Analysis of Facebook’s GraphQL

Language. In Proceedings of the 11th Alberto Mendelzon International Workshop
on Foundations of Data Management (AMW).

[11] D. S. Johnson. 1990. A catalog of complexity classes. In Handbook of Theoretical
Computer Science, J. van Leeuwen (Ed.). Vol. A. Elsevier, Chapter 2.

[12] Wojciech Kazana and Luc Segoufin. 2013. Enumeration of first-order queries on

classes of structures with bounded expansion. In Proceedings of the 32nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2013, New York, NY, USA - June 22 - 27, 2013. 297–308.

[13] Markus Kröll, Reinhard Pichler, and Sebastian Skritek. 2016. On the Complexity

of Enumerating the Answers to Well-designed Pattern Trees. In 19th International
Conference on Database Theory, ICDT 2016, Bordeaux, France, March 15-18, 2016.
22:1–22:18.

[14] Ivo Meißner. 2017. GraphQL Query Complexity Analysis for graphql-js. https:
//github.com/ivome/graphql-query-complexity/. (2017).

[15] Reinhard Pichler and Sebastian Skritek. 2013. Tractable counting of the answers

to conjunctive queries. J. Comput. Syst. Sci. 79, 6 (2013), 984–1001.
[16] Leonard Richardson, Mike Amundsen, and Sam Ruby. 2013. RESTful Web APIs.

O’Reilly Media, Inc.

[17] Luc Segoufin. 2013. Enumerating with constant delay the answers to a query.

In Joint 2013 EDBT/ICDT Conferences, ICDT ’13 Proceedings, Genoa, Italy, March
18-22, 2013. 10–20.

[18] Luc Segoufin and Alexandre Vigny. 2017. Constant Delay Enumeration for FO

Queries over Databases with Local Bounded Expansion. In 20th International
Conference on Database Theory, ICDT 2017, March 21-24, 2017, Venice, Italy. 20:1–
20:16.

[19] Stem Disintermedia, Inc. 2016. Join Monster. https://github.com/stems/
join-monster. (2016).

[20] Stem Disintermedia, Inc. 2017. GraphQL Depth Limit. https://github.com/
stems/graphql-depth-limit/. (2017).

[21] Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages (Extended

Abstract). In Proceedings of the 14th Annual ACM Symposium on Theory of Com-
puting, May 5-7, 1982, San Francisco, California, USA. 137–146.

[22] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Very
Large Data Bases, 7th International Conference, September 9-11, 1981, Cannes,
France, Proceedings. 82–94.

https://github.com/4Catalyzer/graphql-validation-complexity/
https://github.com/4Catalyzer/graphql-validation-complexity/
http://facebook.github.io/graphql
http://facebook.github.io/graphql
https://developer.github.com/v4/
https://developer.github.com/v4/guides/resource-limitations/
https://developer.github.com/v4/guides/resource-limitations/
http://graphql.org/users/
https://github.com/ivome/graphql-query-complexity/
https://github.com/ivome/graphql-query-complexity/
https://github.com/stems/join-monster
https://github.com/stems/join-monster
https://github.com/stems/graphql-depth-limit/
https://github.com/stems/graphql-depth-limit/

	Abstract
	1 Introduction
	2 Data Model
	2.1 GraphQL Schema
	2.2 GraphQL Graphs

	3 GraphQL Language
	4 The Complexity of GraphQL
	5 The Size of a GraphQL Response
	6 Related Work
	7 Conclusions
	References

