Noname manuscript No.
(will be inserted by the editor)

An Overview on

Execution Strategies for Linked Data Queries

Olaf Hartig

Abstract The publication of Linked Open Data on the Web
has gained tremendous momentum over the last five years.
This development makes possible (and interesting) the exe-
cution of queries using up-to-date data from multiple, auto-
matically discovered data sources. As a result, we currently
witness the emergence of a new research area that focuses
on an online execution of Linked Data queries; i.e. queries
that range over data that is made available using the Linked
Data publishing principles.

This article provides a general overview on this new area.
In particular, we introduce the specific challenges that need
to be addressed and then focus on possible strategies for ex-
ecuting Linked Data queries. Furthermore, we classify ap-
proaches proposed in the literature w.r.t. these strategies.

Keywords Linked Data - query execution - survey -
comparison - Web of Data - RDF - SPARQL

1 Introduction

Making data openly available in a machine-processable form
and interlinking it to other data has become a non-negligible
trend on today’s World Wide Web [4,29,31]. In particular,
community initiatives and research groups as well as enter-
prises and government initiatives contribute to what is often
called the Web of Data [4]. Prominent publishers include
the BBC, the New York Times, the UK government, Free-
base (owned by Google), Best Buy, and Sears. Available
data covers diverse topics such as books, movies, music,

Olaf Hartig

University of Waterloo

David R. Cheriton School of Computer Science
200 University Ave West

Waterloo, Ontario N2L 3G1, Canada

Tel.: +1-519-888-4567 ext. 33734

E-mail: ohartig@uwaterloo.ca

radio and television programs, reviews, scientific publica-
tions, genes, proteins, medicine, clinical trials, geographic
locations, people, companies, statistical and census data, etc.
While more and more publishers join the trend, the size and
the coverage of the Web of Data increase continuously.

The availability of all this interlinked data presents an
exciting development; the feasibility to query this emerging
dataspace as if it was a huge multidatabase system opens
possibilities not conceivable before. The challenge is how to
implement such a query functionality.

1.1 Publishing Principles for the Web of Data

In order to identify options for implementing such a query
processing functionality we briefly recall the Linked Data
publishing principles [3] that specify the basis for contribut-
ing to the Web of Data'. These principles require data pro-
viders to use: (i) HTTP, as data access protocol, (ii) HTTP-
scheme-based URIs, as identifiers for entities described in
the data, and (iii) RDF, as the data model to represent data.
Any HTTP-URI in an RDF triple may then be understood as
a data link that enables Linked-Data-aware software clients
to retrieve more data by looking up the URI on the Web.

For instance, the Library of Congress denotes the his-
toric American newspaper “Richmond Dispatch” by the URI
http://chroniclingamerica.loc.gov/lccn/sn850386 144#title. Requesting
data using this URI results in a set of RDF triples including
those given in Figure 1. The last of these triples relates the
Richmond Dispatch to its area of coverage —the city of Rich-
mond, VA- using a URI minted by the GeoNames Web site.
A Linked Data client may look up this URI (and, thus, fol-
low the provided data link) to obtain data about Richmond,
VA, from the GeoNames database; Figure 2 lists some of the
RDF triples that can be retrieved by such a lookup.

! For a more comprehensive introduction to publishing Linked Data
we refer to Heath and Bizer’s recent book [21].

Olaf Hartig

(http://chroniclingamerica.loc.gov/lcen/sn850386 14#title,
(http://chroniclingamerica.loc.gov/lcen/sn850386 14#title,
(http://chroniclingamerica.loc.gov/lcen/sn85038614#title,
(http://chroniclingamerica.loc.gov/lcen/sn85038614#title,

dct:title,
rdf:type,
frbr:successorOf,

dct:coverage,

“Richmond dispatch.”)

http://purl.org/ontology/bibo/Newspaper)
http://chroniclingamerica.loc.gov/lccn/sn84024738#title)
http://sws.geonames.org/4781708/)

Fig. 1 Excerpt of Linked Data about the Richmond Dispatch (properties in the given RDF triples are shortened using the following namespace
prefixes: rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#, dct: http://purl.org/dc/terms/, frbr: http://purl.org/vocab/frbr/core#).

http://sws.geonames.org/4781708/, gn:name, “Richmond”)

(
(http:/sws.geonames.org/4781708/, gn:parentCountry,
(

http://sws.geonames.org/4781708/, ~ geo:lat, "37.553767)

(http:/sws.geonames.org/4781708/, geo:long, “-77.46026")

http://sws.geonames.org/6252001/)

Fig. 2 Excerpt of Linked Data about Richmond, VA (properties in the given RDF triples are shortened using the following namespace prefixes:
gn: http://www.geonames.org/ontology#, geo: http://www.w3.0rg/2003/01/geo/wgs84_pos#).

In addition to exposing their data as per the Linked Data
principles, several publishers also provide a Web service
for executing queries over their data. Usually, such a ser-
vice supports the query language SPARQL [35] and can
be accessed using the corresponding SPARQL protocol [7].
Therefore, such a service is often called a SPARQL endpoint.

The query language SPARQL is based on RDF graph
patterns and subgraph matching: The basic building blocks
of SPARQL queries are basic graph patterns (BGPs), that
are, sets of triple patterns; a triple pattern is an RDF triple
whose subject, predicate, and object may be a query vari-
able, respectively. Query results in SPARQL are defined in
the context of BGP matching, that is, each element of the re-
sult basically represents a matching subgraph in the queried
RDF graph. More complex query patterns are defined by an
algebra that operates over SPARQL result sets [35].

1.2 General Query Approaches for the Web of Data

Several general options for querying the Web of Data exist.
In the simplest case, an application may access the SPARQL
endpoint provided by a particular data publisher. While such
an access may already provide the application with valuable
data, this approach ignores the great potential of the Web of
Data; it does not exploit the possibilities of this huge data-
space that integrates a large number of interlinked datasets.
For instance, a query (such as given in Figure 3) for the geo-
graphic location of the area once covered by the Richmond
Dispatch can neither solely be answered using data from the
Library of Congress nor using data only from the GeoNames
database. However, by combining the corresponding data, it
becomes possible to answer this simple query. Hence, we
are interested in approaches for executing queries over the
virtual union of Linked Data from multiple providers.

The database literature focuses on two paradigms for
querying distributed data provided by autonomous sources:
data warehousing and federated query processing. In an ear-

SELECT ?lat ?long WHERE {
<http://chroniclingamerica.loc.gov/lccn/sn850386 144title >
dct:coverage ?area .
Tarea geo:lat ?at ; geo:long ?long . }

Fig. 3 SPARQL query that asks for the geographic location of the area
once covered by the Richmond Dispatch (prefix declarations omitted).

lier article, we discuss the merits and shortcomings of adapt-
ing these approaches to the Web of Data [20].

Data warehouse approaches are based on copying data
into a centralized repository in a manner similar to the col-
lection of Web documents managed by search engines for
the Web. By using such a repository, it is possible to pro-
vide almost instant query results. This capability comes at
the cost of setting up and maintaining the centralized repos-
itory. Thus, query results may not reflect the most recent
data and users can only benefit from the portion of the Web
of Data that has been copied into the repository.

Federated query processing approaches distribute query
execution over the SPARQL endpoints that publishers pro-
vide for their Linked Data sets. Building a federator for a
given set of SPARQL endpoints differs not much from work
on relational federation systems [11]. The advantage of us-
ing such a federator is that there is no need to synchronize
copied data; instead, queries are always answered based on
the original, up-to-date data. With version 1.1 of SPARQL,
query federation even becomes a feature of the query lan-
guage: The keyword SERVICE enables users to identify sub-
queries that have to be processed by remote SPARQL end-
points [34]. However, a particular downside of all SPARQL
federation approaches is their limited coverage: We cannot
assume that each publisher provides a SPARQL endpoint for
its Linked Data. In contrast, while the Linked Data princi-
ples present a simple publishing method that can be easily
added to existing workflows for generating HTML pages?,

2 Using the RDFa standard, Linked Data can even be embedded in
HTML documents [1], allowing publishers to serve a single type of
document for human and machine consumption.

An Overview on Execution Strategies for Linked Data Queries

providing and maintaining a (reliable) SPARQL endpoint
presents a significant additional effort that not all publish-
ers are willing (or able) to make. Therefore, querying the
Web of Data as a federation of SPARQL endpoints results
in ignoring a large portion of Linked Data available.

Given the limitations that data warehousing and feder-
ated query processing have in exploiting the Web of Data
to its full potential, some research groups recently started to
study approaches for Linked Data query execution, that is,
an online execution of queries for which the query execution
system relies only on the Linked Data principles. Hence, to
obtain Linked Data that is (potentially) relevant for answer-
ing a given query, these approaches look up URIs during
the query execution process itself. Therefore, Linked Data
query execution focuses on live querying use cases where
freshness and discovery of results is more important than an
almost instant answer.

This article aims to provide readers with an informal
overview on the emerging field of Linked Data query exe-
cution. To this end, we first review important characteristics
of the Web and their consequences for Linked Data query
execution (cf. Section 2). We then discuss possible strate-
gies for executing Linked Data queries and classify early ap-
proaches proposed in the literature w.r.t. these strategies. For
our discussion, we focus on three orthogonal dimensions:
1) data source selection (cf. Section 3), ii) data source rank-
ing (cf. Section 4), and iii) integration of data retrieval and
result construction (cf. Section 5).

2 Characteristics of the Web of Data

We note that the Web of Data has certain characteristics that
are significantly different from the characteristics of any tra-
ditional (distributed) database system. These characteristics
have an impact on Linked Data queries and on how these can
be executed. Consequently, before we focus on strategies for
executing Linked Data queries, this section discusses rele-
vant characteristics of the Web of Data.

Most importantly, the Web of Data is a virtually un-
bounded space; that is, in theory, looking up any randomly
generated URI may result in retrieving Linked Data. There-
fore, we cannot assume to ever have a complete list of all
URIs based on which we would retrieve all Linked Data
(even if the Web of Data would be static). Consequently,
we also cannot assume that any system ever has access to all
Linked Data that is —or was— (openly) available on the Web
at a certain point in time.

To illustrate what the consequences of these limited data
access capabilities are for Linked Data query execution, as-
sume a query semantics that allows Linked Data queries to
range over all Linked Data on the Web. Hartig formally an-
alyzes an interpretation of SPARQL query patterns under

such a “full-Web semantics” [17]. This analysis shows that
not any approach for executing such SPARQL-based Linked
Data queries can guarantee complete query results.

We emphasize, however, that instead of such a full-Web
semantics a SPARQL query patterns may also be interpreted
under an alternative, more restrictive query semantics. Sev-
eral such semantics have been proposed [5, 14,17], each of
which restricts the range of Linked Data queries to a well-
defined part of the Web of Data. A query execution ap-
proach that supports such a semantics can guarantee that for
any query the computed result is the same as what is ex-
pected as the complete (and sound) result according to the
corresponding semantics. While a first analysis of some of
these more restrictive query semantics for SPARQL-based
Linked Data queries exists [17], it requires more work to
achieve a better understanding of the theoretical foundations
of Linked Data query execution. Therefore, for most of the
discussion in this article, we assume SPARQL-based Linked
Data queries under full-Web semantics (with the caveat that
completeness of query results cannot be guaranteed).

Another fundamental characteristic of the Web of Data is
that the publication of Linked Data is not coordinated cen-
trally. While such an absence of coordination is critical to
the openness and the growth of the Web of Data, it intro-
duces the following data integration issues:

— Coreferencing: Although URIs are used as globally
unique identifiers for denoting entities in Linked Data,
different providers may use different URIs for denoting
the same entity. Some of the data about such a corefer-
enced entity will be ignored, as long as the coreference
is not detected and resolved.

— Schema heterogeneity: Linked Data providers are free
to choose the RDF vocabularies based on which they
represent their data. Since different vocabularies may
overlap w.r.t. the classes and properties that they define,
a query expressed in terms of one vocabulary must be
rewritten to benefit from data represented using a differ-
ent vocabulary (alternatively, the data may be rewritten
to match the vocabulary used by the query).

Existing work on executing Linked Data queries focuses
mostly on the actual execution strategies (such as those dis-
cussed in the following sections of this article) and, so far,
largely ignores the above-mentioned data integration issues.

In fact, we are only aware of a single proposal that deals
with these issues in the context of Linked Data query execu-
tion: Umbrich et al. study extended query semantics for con-
junctive Linked Data queries [39]. These semantics integrate
1) lightweight RDFS reasoning for a fixed, a-priori defined
set of vocabularies, and ii) inference rules for RDF triples
with the predicate owl:sameAs [37]. The former partially
addresses the issue of schema heterogeneity because it may
exploit certain mappings between vocabularies. The latter

Olaf Hartig

allows for making use of available information about coref-
erenced entities because owl:sameAs is commonly used to
indicate coreferencing URIs in Linked Data [9].

In an empirical analysis, Umbrich et al. compare their
extended query semantics to a baseline semantics that does
not integrate inference rules. This analysis verifies that the
number of solutions in a query result under the extended se-
mantics is usually greater than the result for the correspond-
ing query under the baseline semantics. The price for such
an increase in “recall” [39] is an increase in average query
execution times because, for a complete execution of queries
under the extended semantics, it becomes necessary to look
up more URIs than under the baseline semantics.

While Umbrich et al.’s work is the only proposal to date
that addresses the aforementioned data integration issues ex-
plicitly in the context of Linked Data query execution, ap-
proaches proposed in related contexts might be adapted eas-
ily. Promising candidates for such an adaptation are propos-
als for query relaxation in RDF databases (e.g., [10,23,24])
and approaches for a mapping-based rewriting of queries
over a federation of SPARQL endpoints (e.g., [25,28]).

In addition to characteristics of the Web that affect the
more conceptual design of Linked Data query execution ap-
proaches, a number of data access specific issues must be
taken into account when implementing such an approach
into an actual system. In particular, any system that executes
Linked Data queries must be able to deal with issues such
as the following: Looking up certain URIs may result in the
retrieval of an unforeseeable large set of RDF triples. Re-
sponse times may vary significantly between different Web
servers. Sometimes a URI lookup may take unexpectedly
long or may not be answered at all. Some servers put re-
strictions on clients such as serving only a limited number
of requests per second. Regarding the latter issue, it is im-
portant to emphasize that any Linked Data query execution
system should implement a politeness policy to avoid over-
loading servers. In particular, any system should abide by
the robots.txt protocol® that allows Web sites to demand de-
lays between subsequent requests from the same client. For
Web sites that do not provide a robots.txt file, a default min-
imum delay of, e.g., 500 ms [22,39] should be enforced.

We now come to our discussion of strategies for executing
Linked Data queries. As mentioned in the introduction we
first focus on strategies for data source selection.

3 Data Source Selection
For the execution of Linked Data queries, it is necessary to

retrieve data by looking up URIs. There exist three classes
of approaches for selecting the URIs that a query execution

3 http://www.robotstxt.org/

system looks up during the execution of a query: i) live
exploration, ii) index-based approaches, and iii) hybrid ap-
proaches. In the following, we discuss each of these types.

3.1 Live Exploration Approaches

Live exploration approaches make use of the characteristics
of the Web of Data, in particular, the existence of data links.
In order to execute a given Linked Data query, live-explora-
tion-based systems perform a recursive URI lookup process
during which they incrementally discover further URIs that
can be scheduled for lookup. Thus, such a system explores
the Web of Data by traversing data links at query execution
time. While the data retrieved during such an exploration
allows for a discovery of more URIs to look up, it also pro-
vides the basis for constructing the query result. The starting
point for a live-exploration-based query execution usually is
a set of seed URISs; these seed URIs may be the URIs men-
tioned in the given query, or they are specified as an accom-
panying parameter for the query.

A live-exploration-based system may not need to look
up all URIs discovered. Instead, certain live exploration ap-
proaches may (directly or indirectly) introduce criteria to de-
cide which of the discovered URIs are scheduled for lookup.
For instance, approaches designed to support one of the more
restrictive query semantics (mentioned in Section 2) may ig-
nore any URI whose lookup exceeds the part of the Web that
is relevant according to the semantics.

We notice that live-exploration-based query execution
is similar to focused crawling as studied in the context of
search engines for the WWW [6,2]. However, in focused
crawling a discovered URI qualifies for lookup because of a
high relevance for a specific topic; in live-exploration-based
query execution, the relevance is more closely related to the
task of answering the query at hand. Furthermore, the pur-
pose of retrieving Web content is slightly different in both
cases: Focused crawling, or Web crawling in general, is a
pre-runtime (or background) process during which a system
populates a search index or a local database; then, the run-
time component of such a system provides query access to
the populated data structure. Live exploration approaches, in
contrast, retrieve data to answer a particular query; in these
approaches, link-traversal-based data retrieval is an essen-
tial part of the query execution process itself. Nonetheless,
implementation techniques used for focused crawling, such
as context graphs [8], might be applied in a live exploration
approach for Linked Data query execution.

The most important characteristic of live exploration ap-
proaches is the possibility to use data from initially unknown
data sources. This characteristic allows for serendipitous dis-
covery and, thus, enables applications that tap the full poten-
tial of Linked Data on the Web. Another characteristic is that
live exploration approaches might be used to develop query

An Overview on Execution Strategies for Linked Data Queries

execution systems that do not require any a-priori informa-
tion about the Web of Data. Consequently, such a system
might readily be used without having to wait for the comple-
tion of an initial data load phase or any other type of prepro-
cessing. Hence, live exploration approaches are most suit-
able for an “on-demand” querying scenario. On the down-
side, data access times inherently add up due to the recur-
sive nature of the lookup process. Possibilities for paralleliz-
ing data retrieval are limited because relevant URIs only
become available incrementally. Another limitation of live
exploration approaches is their inherent dependency on the
structure of the network of data links as well as on the num-
ber of links. In a Web sparsely populated with links, chances
are low to discover relevant data. A system may report more
complete results for certain queries (under full-Web seman-
tics), if it uses other source selection approaches.

In its purest form, live exploration approaches assume
query execution systems that do not have any a-priori in-
formation about the Web of Data [16]. It is also possible,
however, that a query execution system reuses data retrieved
during the execution of a query as a basis for processing
subsequent queries. Such a reuse can be beneficial for two
reasons [15]: 1) it can improve query performance because
it reduces the need to retrieve data multiple times; 2) assum-
ing full-Web semantics, it can provide for more complete
query results, calculated based on data from data sources
that would not be discovered by a live exploration starting
without previously retrieved data. However, since reusing
retrieved data for the execution of multiple queries is a form
of data caching, it requires suitable caching strategies. In
particular, any system that keeps previously retrieved data
has to apply an appropriate invalidation strategy; otherwise,
it could lose the advantage of up-to-date query results. As
an alternative to caching retrieved data, it is also possible to
only keep a summary of the data or certain statistics about it.
Such information may then be used to guide the execution of
later queries (as in the case of index-based source selection
approaches which we discuss in the following).

3.2 Index-Based Approaches

Index-based approaches ignore the existence of data links
during the query execution process itself. Instead, these ap-
proaches rely on a pre-populated index which is used for
identifying URIs to look up during query execution time.
Hence, in contrast to index structures that store the data it-
self (such as the original B-tree or existing approaches for
indexing RDF data [12,32,42]), the index-based approaches
discussed here use data structures that index URIs as point-
ers to data; each of these URIs may appear multiple times
in such an index because the data that can be retrieved using
such a URI may be associated with multiple index keys.

A typical example for such a data structure uses triple
patterns as index keys [26]. Given such a pattern, the corre-
sponding index entry is a set of URIs such that looking up
each of these URIs provides us with some data that contains
a matching triple for the pattern. To enable data source rank-
ing (discussed in the following Section 4), index entries may
additionally encode the cardinality of matching triples for
each indexed URI [13,26,40]. Thus, such an index presents
a summary of the data available from all indexed URIs.

Source selection using such an index is based on rele-
vance [26,38]: A URI is relevant for a given query if the data
retrieved by looking up the URI contributes to the query re-
sult. However, the existence of a triple that matches a triple
pattern from the query is not sufficient to make the corre-
sponding URI relevant; only if such a matching triple con-
tributes to an element of the query result, the URI is relevant.

Given that data from irrelevant URIs is not required to
compute a query result, avoiding the lookup of such URIs
reduces the cost of query executions significantly [13,40,
26,33]. Consequently, the focus of research in this context
is to identify a subset of all (indexed) URIs that contains
all relevant URIs and as few irrelevant ones as possible.
While simpler approaches consider any triple pattern of a
given query separately [33], more sophisticated approaches
achieve a higher reduction of irrelevant URIs by taking into
account joins between triple patterns [13,40,26,38].

We note that these index-based approaches are closer in
spirit to traditional query processing techniques than live ex-
ploration approaches. Existing data summarization and in-
dexing techniques may be adapted to develop an index-based
approach for Linked Data query execution. For instance,
Umbrich et al. adopt the concept of multidimensional his-
tograms as a data summary for index-based Linked Data
query execution [40] (the original use case for multidimen-
sional histograms is an estimation of selectivities for multi-
dimensional queries). Similarly, the QTree that Harth et al.
use as a summary of Linked Data [13] is a combination of a
histogram and an R-tree (the latter was originally proposed
to index data about spatial objects).

Further data structures for index-based Linked Data query
execution are proposed in the literature: In contrast to the
aforementioned approach of using triple patterns as index
keys, Tian et al. extract frequently used combinations of
triple patterns from a given query workload and use unique
encodings of these combinations as index keys [38]. For
a query workload that is similar to the workload used for
building an index, the authors show that their approach can
prune more irrelevant URIs than the baseline approach of
using triple patterns as index keys. An inverted URI index
is another, very simple index structure [40]. In this case,
the index keys are URIs, namely, the URIs mentioned in
the data that can be retrieved by looking up the indexed
URISs. In another approach, the index keys are properties

Olaf Hartig

and classes from ontologies used for the data [33]. Umbrich
et al. refer to this approach as schema-level indexing [40].
In their work, the authors compare the application of an
inverted URI index, schema-level indexing, the aforemen-
tioned QTree, and a multidimensional histogram, for an in-
dex-based Linked Data query execution [40].

Existing work on index-based Linked Data query execu-
tion usually assumes that the set of URIs to be indexed is
given. To build the index for such a set, it is necessary to re-
trieve the data for any given URI. Instead of populating the
index based on a given set of URISs, it is also possible to build
such an index using the output of a Web crawler for Linked
Data (for a detailed discussion of crawling Linked Data, we
refer to Hogan et al. [22]). Alternatively, populated indexes
may also be a by-product of executing queries using a live
exploration approach. However, in all these cases, an initial
lookup of all indexed URIs is required before the index can
be used for executing Linked Data queries.

After populating an initial version of an index, it is nec-
essary to maintain such an index. Maintenance may include
adding additionally discovered URIs and keeping the index
up to date. The latter is necessary because what data can be
retrieved from indexed URIs might change over time. While
Umbrich et al. address this topic briefly [40], no work exists
that discusses index maintenance for index-based Linked
Data query execution in detail. However, the challenges are
similar to the problems addressed in the contexts of: index
maintenance in information retrieval, index maintenance for
traditional Web search engines, Web caching, maintenance
of data(base) caches, and view maintenance in databases.

The most important characteristic of index-based source
selection is the ability to determine all potentially relevant
URISs at the beginning of a query execution. This ability en-
ables query execution systems to fully parallelize data re-
trieval. Such a parallelization might reduce data retrieval
time for executing a query. As a result, an efficiently im-
plemented index-based system might answer a Linked Data
query faster than a live-exploration-based system (assuming
both systems eventually look up the same set of URIs during
the execution).

On the other hand, a live-exploration-based system is
ready for use immediately, whereas an index-based system
can only be used after initializing its index. Such an ini-
tialization may take a significant amount of time assuming
that the system has to retrieve the data for all indexed URIs
first. From the aforementioned publications, only Paret et al.
take the initial retrieval time into account for the evaluation
of their approaches [33]. Unfortunately, the actual setup of
the corresponding experiments is not clear in this work; in
particular, missing information about response times of the
dedicated Web servers used for the experiment and about
the number of URIs looked up, prohibit drawing conclu-
sions from the reported measurements. However, for sys-

tems that use crawling to populate their index, we may get
an idea of the initial data retrieval time by looking into re-
lated work. In particular, in their work on a data warehouse
for Linked Data, Hogan et al. report the following measure-
ments [22]: For crawling 1,000 URIs (and 100,000 URIs)
with 64 threads on a single machine they report an over-
all crawl time of about 9 minutes (and 360 minutes); in a
distributed setting, 8 machines with 64 threads each, crawl
100,000 URIs in about 63 minutes.

Another advantage of index-based approaches claimed
in the literature is the ability to report query results that
are more complete when compared to live exploration ap-
proaches [13]. However, the authors’ understanding of com-
pleteness remains unclear, because they do not provide a
precise definition of query semantics for the Linked Data
queries executed by their approach (the same holds for al-
most all of the existing publications that propose approaches
for executing Linked Data queries). However, if we assume
full-Web semantics, it is indeed possible that an index-based
approach computes some solutions of a query result that a
live exploration approach cannot compute; this is the case
if some data necessary for computing these solutions cannot
be discovered by link traversal. On the other hand, a live-ex-
ploration-based execution may discover and look up URIs
that are not indexed; the data retrieved by these lookups
may allow for the computation of certain query solutions. In
such a case, the corresponding index-based execution cannot
compute these solutions. Hence, a general statement about
the superiority of an index-based approach over a live ex-
ploration approach (or vice versa) w.r.t. result completeness
is not possible in the context of full-Web semantics. Empiri-
cal studies that compare the suitability of both strategies for
different use cases remain to be conducted.

Finally, we also emphasize that the aforementioned no-
tion of relevance for URIs should not be carried over di-
rectly to live exploration approaches (or used in a compar-
ison of both strategies). For a live-exploration-based query
execution, the retrieval of data is not only necessary to ob-
tain matching triples that contribute to the query result; in-
stead, such data may also allow a query execution system to
discover (and, thus, traverse) data links, through which the
system may eventually obtain additional matching triples.

3.3 Hybrid Approaches

Hybrid source selection approaches combine an index-based
approach with a live exploration approach and, thus, aim to
achieve the advantages of both approaches without inher-
iting their respective shortcomings. For instance, a hybrid
approach may use an index to determine a suitable set of
seed URIs as input for a subsequent live exploration process.
This process may than feed back information for updating,
for expanding, or for reorganizing the index. An alternative

An Overview on Execution Strategies for Linked Data Queries

idea is a hybrid approach that uses an index only for priori-
tizing discovered data links and, thus, for controlling a live
exploration process.

To the best of our knowledge, the only query execu-
tion strategy that implements such a hybrid approach is the
“mixed strategy” proposed by Ladwig and Tran [26]. This
strategy is based on a ranked list of URIs to look up. To
obtain an initial version of this list for a given query, the ap-
proach exploits an index. Additional URIs discovered dur-
ing query execution are then integrated into the list. Ladwig
and Tran’s main technical contribution is an adaptive source
ranking approach which we discuss in the following section.

4 Data Source Ranking

Instead of merely selecting URISs to look up, execution strate-
gies for Linked Data queries may rank the resulting set of
URISs such that the ranking represents a priority for looking
up any (selected) URI. Such a data source ranking may al-
low a query execution system to i) report solutions of a query
result as early as possible, ii) reduce the time for computing
the first & solutions, or iii) compute the maximum number
of solutions in a given amount of time [26]. In this section,
we briefly summarize existing work on source ranking for
Linked Data query execution.

Harth et al. complement their index-based source se-
lection approach with source ranking [13]. Selected URIs
are ranked using an estimate for the number of query solu-
tions that the data of each URI contributes to. The basis for
estimating these numbers are cardinalities recorded in the
QTree entries for each (indexed) URI. By using the QTree,
a query execution system might obtain an estimate of how
many matching triples for a given triple pattern are avail-
able from each URI. Based on these triple-pattern-specific
estimates, Harth et al. compute the estimates for the whole
query recursively. For the computation, the authors take join
cardinality estimations into account.

Ladwig and Tran introduce a ranking approach that in-
cludes multiple scores [26]:

1. Triple frequency - inverse source frequency (TF-ISF).
TF-ISF is an adaptation of the well-known TF-IDF mea-
sure used in information retrieval; Ladwig and Tran de-
fine TF-ISF for a pair of an indexed URI and a triple
pattern (from the query). The computation of such a TF-
ISF measure is based on the triple-pattern-specific car-
dinality of the corresponding URI (that is, how many
matching triples for the pattern can be obtained by look-
ing up the URI). Similar to Harth et al. [13], Ladwig
and Tran’s approach obtains these cardinalities from an
index. However, due to a different index structure used
by Ladwig and Tran, the obtained cardinalities are accu-

rate (in Harth et al., they are estimates only, because the
QTree is an approximate index structure [13]).

2. (URI-specific) join cardinality estimates. For each URI,
this score approximates the number of query solutions
that can be computed using only the data from the given
URI. While this score is similar to the estimates that
Harth et al. use for ranking, it neglects joins based on
data from multiple URIs. For the computation of such
a (URI-specific) join cardinality estimate, Ladwig and
Tran propose an approach that, again, uses the triple-
pattern cardinalities recorded in their index, as well as
partial query solutions (generated using a random sam-
ple of data already retrieved during the query execution).

3. In-link scores. This score is calculated based on incom-
ing data links, that is, references to a given URI in the
data available from other URISs. Interlinkage information
about a set of URIs may be recorded in an additional data
structure that complements the main index used for in-
dex-based source selection. However, Ladwig and Tran
propose to obtain such information during the execution
of a query. As a result, the in-link score can also be used
to rank URISs selected by live exploration approaches.

Some of the input for calculating the aforementioned scores
may be refined based on information that gradually becomes
available during the query execution process. For instance,
the data used to obtain samples for join cardinality estima-
tion grows; similarly, additional interlinkage information be-
comes available. As a consequence, Ladwig and Tran pro-
pose a regular recalculation of scores and resulting ranks.
Based on certain thresholds, the authors study the trade-off
between the benefits of a more accurate ranking that can
be achieved by recalculating scores more frequently and the
higher costs incurred by a more frequent recalculation [26].

The source ranking approaches as summarized above are
designed to achieve the objectives mentioned in the begin-
ning of this section. We note that similar objectives charac-
terize the problem of top-k query processing where only the
k top-ranked result elements need to be computed. Wagner
et al. study top-k processing for Linked Data queries [41]. In
particular, the authors propose a top-k approach for the in-
dex-based source selection strategy. Although this approach
is about ranking (intermediate) result elements, it enforces
an indirect ranking of the URIs to look up. The additional
information that is necessary for this approach is, again, as-
sumed to be recorded in the pre-populated index.

5 Integration of Data Retrieval and Result Construction

The actual process of executing a Linked Data query may
consist of two separate phases: During the first phase, a query
execution system selects URIs and uses them to retrieve data
from the queried Web (as discussed before); during a subse-

Olaf Hartig

quent, second phase, the system generates the query result
using the data retrieved in the first phase. Instead of separat-
ing these two phases, it is also possible to integrate the re-
trieval of data into the result construction process. Hereafter,
we use the term integrated execution approaches to refer to
Linked Data query execution approaches that apply the latter
idea. Analogously, separated execution approaches clearly
separate data retrieval from result construction by two con-
secutive phases. We emphasize that separating or integrating
data retrieval and result construction is a design decision that
is orthogonal to what source selection strategy (and source
ranking strategy) is used for a particular Linked Data query
execution approach. In the following, we discuss both types
of approaches, separated execution and integrated execution.

5.1 Separated Execution Approaches

Due to the clear separation of data retrieval and result con-
struction, separated approaches are straightforward to im-
plement. In particular, index-based source selection lends
itself naturally to such an implementation. Consequently,
most of the aforementioned publications on index-based ap-
proaches assume a two-phase execution strategy [13,40,33].
However, it is also easy to develop a separated execution ap-
proach based on live exploration: During the first phase, a
query execution system retrieves data by recursively travers-
ing all data links that qualify according to the lookup crite-
rion applied; during the second phase, the system generates
the query result.

The downside of separated execution approaches is that
the query execution system can report first elements of the
query result only after it has completed the data retrieval
phase. Looking up a large set of selected URIs or retrieving
the complete set of reachable data may exceed the resources
of an execution system or it may take a prohibitively long
time. We note that a combination of data source ranking and
thresholds, for constraining the overall time of the data re-
trieval phase or the maximum number of lookups, may ad-
dress these problems partially (for the price of missing some
elements of the query result).

5.2 Integrated Execution Approaches

Integrated approaches may allow a query execution system
to report first solutions for a (monotonic) query early, that
is, before data retrieval has been completed. Furthermore,
certain integrated approaches may require significantly less
query-local memory than any separated execution approach;
this may hold in particular for approaches that process re-
trieved data in a streaming manner and, thus, do not re-
quire to store all retrieved data until the end of a query ex-
ecution process. For instance, Ladwig and Tran introduce a

symmetric-hash-join-based approach which presents such a
case [26,27]. However, although this approach may not need
to hold retrieved data, it requires query-local memory for
materializing all intermediate query results (and, depending
on the query, only a certain fraction of all these intermediate
results may eventually become a part of the overall query
result). Nonetheless, it is reasonable to assume that for most
Linked Data queries the overall memory required for hold-
ing all intermediate query results is smaller than the memory
required for holding all discovered data. To the best of our
knowledge, an analysis of the trade-offs of materializing in-
termediate results vs. holding all retrieved data has not been
conducted for Linked Data query execution approaches.

As for the separated execution strategy discussed before,
it is possible to use any type of source selection (and source
ranking) as a basis for an integrated execution approach. A
manifold of combinations are conceivable; in particular, live
exploration may be combined with an integrated execution
approach in a multitude of ways. In fact, this combination
is the combination most widely studied in the literature. We
refer to query executions that present such a combination as
link traversal based query executions (LTBQE), and discuss
them separately in the following section.

5.3 Link Traversal Based Query Execution (LTBQE)

Before we refer to particular LTBQE approaches proposed
in the literature, we first outline a naive example of such an
approach in order to illustrate the idea of combining live-ex-
ploration-based source selection with an integrated execu-
tion strategy: Using a set of seed URIs as a starting point,
a query execution system may alternate between two types
of execution stages, that are, link traversal stages and re-
sult computation stages. Each link traversal stage consists
of looking up URIs that the system finds in the data re-
trieved during the previous link traversal stage. During the
result computation stage that follows such a link traversal
stage, the system generates a temporary, potentially incom-
plete query result using all data retrieved so far; from such
a result, the system reports those solutions that did not ap-
pear in the result generated during the previous result com-
putation stage. Hence, the system incrementally explores the
queried Web of Data in a breadth-first manner and produces
more and more elements of the query result during that pro-
cess. We emphasize that such a naive, breadth-first LTBQE
approach is unsuitable in practice, because completely re-
computing a partial query result during each result compu-
tation stage is not efficient.

Schmedding proposes a version of the naive approach
that addresses this problem [36]. The idea of Schmedding’s
LTBQE approach is to recursively adjust the currently com-
puted query result each time the execution system retrieves

An Overview on Execution Strategies for Linked Data Queries

additional data. Schmedding’s main contribution is an ex-
tension of the SPARQL algebra operators that makes the dif-
ferences between query results computed on different input
data explicit; by using the extended algebra, a query execu-
tion system might compute a query result using only i) the
additionally retrieved data and ii) the previously computed
result (instead of recomputing everything from scratch).

In an early research publication on the topic, Hartig et al.
describe the idea of LTBQE using an approach that presents
an even tighter integration of link traversal and result con-
struction than the two aforementioned approaches [18]. In-
stead of performing multiple result computation stages that
always compute a whole query result (from scratch as in a
the naive approach or incrementally as proposed by Schmed-
ding), the authors introduce a strategy for executing a sin-
gle result construction process only; this process computes
the solutions of a query result by incrementally augment-
ing intermediate solutions such that these intermediate so-
lutions cover more and more triple patterns of the query.
For such an augmentation, the process uses matching triples
from data retrieved via link traversal. At the same time, the
process uses the URIs in these matching triples for further
link traversal. Hence, this strategy deeply intertwines result
construction and link traversal. For a more detailed descrip-
tion of the process, we refer to [18,20].

We emphasize that LTBQE as described by Hartig et
al. presents a general strategy rather than a concrete, imple-
mentable algorithm. In a more recent publication, Hartig and
Freytag provide a formal, implementation-independent def-
inition of this LTBQE strategy and use this definition to for-
mally analyze the strategy [19]. A variety of approaches for
implementing this strategy are conceivable. Implementation
approaches studied so far can be summarized as follows:

— Hartig et al. themselves study an implementation that
uses a synchronized pipeline of iterators [18]. In a follow-
up paper on this implementation, Hartig proposes a heu-
ristics-based approach for query planning [16].

— Ladwig and Tran make use of symmetric hash joins,
as mentioned before. More precisely, their implemen-
tation approach employs an asynchronous, push-based
pipeline of symmetric hash join operators [26]. In later
work, the authors extend this approach and introduce the
symmetric index hash join operator. This operator allows
a query execution system to incorporate a query-local
RDF data set into the query execution [27].

— Miranker et al. introduce another push-based implemen-
tation [30]. The authors implement LTBQE using the
well-known Rete match algorithm.

Since LTBQE approaches combine an integrated execution
and live-exploration-based source selection they inherit the
advantages and limitations of these two strategies (as dis-
cussed in Sections 3.1 and 5.2). That is, as all live-explora-
tion-based systems, LTBQE systems are able to make use

of data from initially unknown data sources and can readily
be used without first populating and maintaining support-
ing data structures. Furthermore, an LTBQE system can be
built to report first solutions early. On the downside, data
retrieval may not be parallelized as effectively as is possi-
ble with index-based source selection; moreover, a sparsity
of data links reduces the chances for discovering potentially
relevant data and may thus result in missing a larger number
of solutions for queries under full-Web semantics.

6 Conclusions

In this article, we have provided a general overview on the
new field of Linked Data query execution. We have intro-
duced three dimensions along which approaches for execut-
ing Linked Data queries can be classified. Each of these di-
mensions captures a particular aspect of a full Linked Data
query execution approach. In the context of these dimen-
sions, we have discussed different strategies that possible
Linked Data query execution approaches may apply. Fur-
thermore, we have outlined how the discussed strategies are
implemented in the Linked Data query execution approaches
that have been proposed in the literature so far. We conclude
this overview by classifying these proposed approaches along
our three dimensions:

Publication Source Source Integr.
Selection Ranking | Exec.
Harth et al. [13,40] index-based yes no
Hartig et al. [18,16,19] live expl. no yes
Ladwig and Tran [26] live expl. yes yes
(“bottom up”)
Ladwig and Tran [26] index-based yes yes
(“top down”)
Ladwig and Tran [26] hybrid yes yes
(“mixed strategy”)
Ladwig and Tran [27] live expl. no yes
Miranker et al. [30] live expl. no yes
Paret et al. [33] index-based no no
Schmedding [36] live expl. no yes
Tian et al. [38] index-based no n/a
Umbrich et al. [40] index-based yes no
(multidim. histograms)
Umbrich et al. [40] index-based no no
(schema-level index)
Umbrich et al. [40] index-based no no
(inverted URI index)
Wagner et al. [41] index-based yes yes

Table 1 Classification of existing work on Linked Data query execu-
tion along the dimensions of i) data source selection, ii) data source
ranking, and iii) integration of data retrieval and result construction.

References

1. B. Adida, M. Birbeck, S. McCarron, and I. Herman. RDFa Core
1.1 — Syntax and Processing Rules for Embedding RDF through
Attributes. W3C Rec., Online: http://www.w3.org/TR/rdfa-core/.

Olaf Hartig

11.

13.

14.

16.

17.

18.

19.

20.

21.

22.

S. Batsakis, E. G. M. Petrakis, and E. Milios. Improving the Per-
formance of Focused Web Crawlers. Data & Knowledge Engi-
neering, 68(10):1001-1013, 2009.

T. Berners-Lee. Design Issues: Linked Data.
http://www.w3.org/Designlssues/LinkedData.html.

Online at

. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data — The Story

So Far. Int. Journal on Semantic Web and Information Systems
(LJSWIS), 5(3):1-22, 2009.

. P. Bouquet, C. Ghidini, and L. Serafini. Querying The Web Of

Data: A Formal Approach. In Proc. of the 4th Asian Semantic
Web Conference (ASWC), 2009.

. S. Chakrabarti, M. van den Berg, and B. Dom. Focused Crawl-

ing: A New Approach to Topic-Specific Web Resource Discovery.
Computer Networks, 31(11-16):1623-1640, 1999.

. K. G. Clark, L. Feigenbaum, and E. Torres. SPARQL Protocol

for RDF. W3C Rec., Online at http://www.w3.org/TR/rdf-sparql-
protocol/, Jan. 2008.

. M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori.

Focused Crawling Using Context Graphs. In Proc. of the 26th Int.
Conf. on Very Large Data Bases (VLDB), 2000.

. L. Ding, J. Shinavier, Z. Shangguan, and D. L. McGuinness.

SameAs Networks and Beyond: Analyzing Deployment Status
and Implications of owl:sameAs in Linked Data. In Proc. of the
9th International Semantic Web Conference (ISWC), 2010.

. P. Dolog, H. Stuckenschmidt, H. Wache, and J. Diederich. Relax-

ing RDF Queries based on User and Domain Preferences. Journal
of Intelligent Information Systems, 33(3):239-260, 2009.

O. Gorlitz and S. Staab. Federated Data Management and Query
Optimization for Linked Open Data. In New Directions in Web
Data Management 1, pages 109-137. 2011.

. A. Harth and S. Decker. Optimized Index Structures for Query-

ing RDF from the Web. In Proc. of the 3rd Latin American Web
Congress (LA-Web), 2005.

A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, and
J. Umbrich. Data Summaries for On-Demand Queries over Linked
Data. In Proc. of the 19th Int. Conf. on World Wide Web (WWW),
2010.

A. Harth and S. Speiser. On Completeness Classes for Query Eval-
uation on Linked Data. In Proc. of the 26th AAAI Conference,
2012.

. O. Hartig. How Caching Improves Efficiency and Result Com-

pleteness for Querying Linked Data. In Proc. of the 4th Linked
Data on the Web workshop (LDOW), 2011.

O. Hartig. Zero-Knowledge Query Planning for an Iterator Imple-
mentation of Link Traversal Based Query Execution. In Proc. of
the 8th Extended Semantic Web Conference (ESWC), 2011.

O. Hartig. SPARQL for a Web of Linked Data: Semantics and
Computability. In Proc. of the 9th Extended Semantic Web Con-

ference (ESWC), 2012.

O. Hartig, C. Bizer, and J.-C. Freytag. Executing SPARQL
Queries over the Web of Linked Data. In Proc. of the 8th In-
ternational Semantic Web Conference (ISWC), 2009.

O. Hartig and J.-C. Freytag. Foundations of Traversal Based
Query Execution over Linked Data. In Proc. of the 23rd ACM
Conference on Hypertext and Social Media (HT), 2012.

O. Hartig and A. Langegger. A Database Perspective on Consum-
ing Linked Data on the Web. Datenbank-Spektrum, 10(2), 2010.
T. Heath and C. Bizer. Linked Data: Evolving the Web into a
Global Data Space. Morgan & Claypool, 2011.

A. Hogan, A. Harth, J. Umrich, S. Kinsella, A. Polleres, and
S. Decker. Searching and Browsing Linked Data with SWSE: the
Semantic Web Search Engine. Web Semantics: Science, Services
and Agents on the World Wide Web, 9(4), 2012.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

A. Hogan, M. Mellotte, G. Powell, and D. Stampouli. Towards
Fuzzy Query-Relaxation for RDF. In Proc. of the 9th Extended

Semantic Web Conference (ESWC), 2012.
H. Huang, C. Liu, and X. Zhou. Approximating Query Answering

on RDF Databases. World Wide Web, 15(1):89-114, 2012.

A. K. Joshi, P. Jain, P. Hitzler, P. Z. Yeh, K. Verma, A. P. Sheth, and
M. Damova. Alignment-based Querying of Linked Open Data. In
Proc of the 11th Int. Conference on Ontologies, DataBases, and
Applications of Semantics (ODBASE), 2012.

G. Ladwig and D. T. Tran. Linked Data query processing strate-
gies. In Proc. of the 9th International Semantic Web Conference
(ISWC), 2010.

G. Ladwig and D. T. Tran. SIHJoin: Querying Remote and Local
Linked Data. In Proc. of the 8th Extended Semantic Web Confer-
ence (ESWC), 2011.

K. Makris, N. Gioldasis, N. Bikakis, and S. Christodoulakis. On-
tology Mapping and SPARQL Rewriting for Querying Federated
RDF Data Sources. In Proceedings of OTM Conferences, 2010.
P. Mika and T. Potter. Metadata Statistics for a Large Web Corpus.
In Proc. of the 5th Linked Data on the Web Workshop (LDOW),
2012.

D. P. Miranker, R. K. Depena, H. Jung, J. F. Sequeda, and
C. Reyna. Diamond: A SPARQL Query Engine, for Linked Data
Based on the Rete Match. In Proc. of the Workshop on Artificial
Intelligence meets the Web of Data (AImWD), 2012.

H. Miihleisen and C. Bizer. Web Data Commons — Extracting
Structured Data from Two Large Web Corpora. In Proc. of the 5th
Linked Data on the Web Workshop (LDOW), 2012.

T. Neumann and G. Weikum. RDF-3X: a RISC-style Engine for
RDF. In Proc. of the 34th Int. Conf. on Very Large Data Bases
(VLDB), 2008.

E. Paret, W. Van Woensel, S. Casteleyn, B. Signer, and O. De
Troyer. Efficient Querying of Distributed RDF Sources in Mo-
bile Settings based on a Source Index Model. Procedia CS, 2011.
E. Prud’hommeaux and C. Buil-Aranda. SPARQL 1.1 Federated
Query. W3C Rec., Online at http://www.w3.org/TR/sparql11-
federated-query/, Mar. 2013.

E. Prud’hommeaux and A. Seaborne. SPARQL Query Language
for RDF. W3C Rec., Online at http://www.w3.org/TR/rdf-sparql-
query/, Jan. 2008.

F. Schmedding. Incremental SPARQL Evaluation for Query An-
swering on Linked Data. In Proc. of the 2nd Int. Workshop on
Consuming Linked Data (COLD), 2011.

M. Schneider. OWL 2 Web Ontology Language, RDF-
Based Semantics (Second Edition). W3C Rec., Online at
http://www.w3.org/TR/owl2-rdf-based-semantics/, Dec. 2012.

Y. Tian, J. Umbrich, and Y. Yu. Enhancing Source Selection for
Live Queries over Linked Data via Query Log Mining. In Proc. of
the Joint Int. Semantic Technology Conference (JIST), 2011.

J. Umbrich, A. Hogan, A. Polleres, and S. Decker. Improving the
Recall of Live Linked Data Querying through Reasoning. In Proc.
of the 6th Int. Conference on Web Reasoning and Rule Systems
(RR),2012.

J. Umbrich, K. Hose, M. Karnstedt, A. Harth, and A. Polleres.
Comparing Data Summaries for Processing Live Queries over
Linked Data. World Wide Web, 14(5-6):495-544, 2011.

A. Wagner, T. Tran, G. Ladwig, and A. Harth. Top-K Linked Data
Query Processing. In Proc. of the 9th Extended Semantic Web
Conference (ESWC), 2012.

C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple Index-
ing for Semantic Web Data Management. In Proc. of the 34th In-
ternational Conference on Very Large Data Bases (VLDB), 2008.

