
Transforming Event Knowledge Graph to
Object-Centric Event Logs: A Comparative Study for

Multi-dimensional Process Analysis

Shahrzad Khayatbashi1, Olaf Hartig1, and Amin Jalali2

1 Linköping University, Linköping, Sweden,
(shahrzad.khayatbashi | olaf.hartig)@liu.se

2 Stockholm University, Stockholm, Sweden,
aj@dsv.su.se

Abstract. Process mining has significantly transformed business process man-
agement by introducing innovative data-based analysis techniques and empower-
ing organizations to unveil hidden insights previously buried within their recorded
data. The analysis is conducted on event logs structured by conceptual models.
Traditional models were defined based on only a single case notion, e.g., order
or item in the purchase process. This limitation hinders the application of pro-
cess mining in practice for which new data models are developed, a.k.a, multi-
dimensional Event Knowledge Graph (EKG) and Object-Centric Event Log (OCEL).
While several tools have been developed for OCEL, there is a lack of process
mining tooling around the EKG. In addition, there is a lack of comparison about
the practical implication of choosing one approach over the other. To fill this
gap, the contribution of this paper is threefold. First, it defines and implements
an algorithm to transform event logs represented as EKG to OCEL. The imple-
mentation is then used to transform five real event logs based on which the ap-
proach is evaluated. Second, it compares the performance of analyzing event logs
represented in these two models. Third, it reveals similarities and differences in
analyzing processes based on event logs represented in these two models. The re-
sults highlight ten important findings, including different approaches in calculat-
ing directly-follows relations when analyzing filtered event logs in these models
and issues that need to be considered in analyzing event lifecycle and inter-log
relations using OCEL.

Keywords: Event Knowledge Graph, Object-Centric Event Log, Object-Centric
Process Mining, Neo4j, Graph database

1 Introduction

Business process analysis is important in modern organizations because it enables com-
prehension, optimization, and enhancement of operational processes based on recorded
data [38]. These processes are complex due to the complex nature of the business do-
main. To address this complexity, log file formats and standards have emerged as con-
ceptual models that capture the essential information required to support the analy-
sis [2, 14, 21, 33]. These conceptual models drive the development of algorithms and
facilitate the processing and analysis of recorded data.

2 Shahrzad Khayatbashi et al.

Process mining is a research area that facilitates data-driven business process anal-
ysis based on recorded event logs [38]. Log files are crucial for analyzing business
processes. Thus, extensive efforts have been made to define conceptual models, in the
forms of log file formats and standards, that enable the analysis of recorded data us-
ing different software systems [21, 23, 34]. These formats and standards ensure com-
patibility and interoperability across various systems while providing a consistent and
structured format for recording process-related information.

Traditionally, event log formats assume a single case notion as an obligatory ele-
ment based on which the rest of the information could be correlated. For example, a
purchase order event log could be extracted using either the order or the item notions,
while the process contains both objects as potential cases. In reality, business processes
deal with different perspectives, which may require several case notions. Hence, re-
stricting log formats to a single case notion limits the applicability of process mining in
practice.

To circumvent this limitation, researchers and practitioners flattened the recorded
event log to perform process analysis, which introduces its limitations, including false
behavior and false analysis results [16] (which result from so-called divergence and
convergence problems [39]). For example, one order may contain many items. In the
log extraction, if we consider the “item” as the case notion, events like “create order”
must be repeated for each item. The mapping of events based on one case notion, like
this example, is called flattening. One consequence is that we will get false statistics
when retrieving the number of orders which are created. If the log is flattened around
the “order” case notion, the relation between the “select item” and “approve item” in the
process can be lost because all items can be stored around one order resulting in losing
information about relations between items. The lack of these relations could introduce
loops between the activities of these two events in discovering process models, which is
considered false behavior. These issues compromise the accuracy of the analysis [39].

The Object-Centric Event Log (OCEL) [21] has been proposed to address the lim-
itation of having only one case notion when extracting log files, and it is part of a
new and emerging paradigm in process mining called Object-Centric Process Min-
ing (OCPM) [39]. This paradigm aims to support analyzing business processes consid-
ering multiple case notions that require developing algorithms, techniques, and methods
to support multi-dimensional process analysis. Although OCPM has started recently,
due to the highly relevant problem that it targets, several algorithms, tools, and libraries
have been developed to support such analysis, e.g., [3, 4, 6, 11, 26, 34, 35, 39, 40]. This
development can also be observed in commercial tools like Celonis3, showing the rele-
vancy of the problem in practice.

Another recent alternative to recording event logs is knowledge graphs, which un-
leash their power within information systems, showcasing their ability to support vari-
ous data sources, scalability, semantic reasoning, and adaptable schema evolution [24].
Thus, it is recently used to record and process event logs with multiple case notions,
called multi-dimensional Event Knowledge Graph (EKG) [14]. However, the lack of
process mining tools for analyzing EKG limits the practical application of this ap-
proach. Additionally, there is a lack of comparative analysis in terms of performance,

3 https://www.celonis.com/

Transforming Event Knowledge Graph to OCELs 3

strengths, weaknesses, limitations, and differences between the processing of data rep-
resented using these two approaches (EKG and OCEL). Therefore, this paper aims to
address the following research questions:

RQ1) How can an event knowledge graph be transformed into an object-centric event
log?

RQ2) How does the performance of processing event knowledge graph compare to
processing object-centric event log in process mining?

RQ3) What are the differences and similarities in applying process mining on an event
knowledge graph compared to an object-centric event log?

To answer the first research question, we define an algorithm that transforms it into
a set of OCELs. We implemented an algorithm as a part of a Python library, called
neo4pm, that can be used to perform the transformation. In this paper, we use this
implementation to transform five real EKGs into OCEL files, which are available pub-
licly [28–32]. In addition, we compare similarities and differences in analyzing pro-
cesses based on event logs represented in EKG and transformed OCELs, which helped
us answer the third research question.

The structure of the paper is as follows. Section 2 gives an overview of related
work. Section 3 provides preliminaries which are used in Section 4, where we define
the algorithm formally. Section 5 reports the results and discusses the findings. Finally,
Section 6 concludes the paper by giving future direction.

2 Related work

In this section, we provide an overview of the research that offers tool support for pro-
cessing event logs represented in multi-dimensional Event Knowledge Graph (EKG)
and Object-centric Event Log (OCEL). Table 1 summarizes the process mining tools
developed for OCEL and EKG. The table categorizes the level of support into eight use
cases: transformation, exploration, monitoring, performance analysis, discovery, con-
formance checking, enhancement, and predictive process monitoring.

The tool support for EKG focuses on transforming traditional log files into the EKG
data model [14]. A recent study has proposed a method for transforming OCEL to
EKG [16]; however, the existing implementation does not yet support the transforma-
tion from the serialized standard OCEL files. Furthermore, there is a lack of support for
EKG in other use cases. In contrast to EKG, the existing contributions to OCEL varies
in different use cases. These categories are represented as columns in Table 1.

In the transformation use case, we have identified three sub-categories of transfor-
mation. Firstly, there are approaches focused on transforming traditional log to OCEL
[37]. Secondly, there are methods for transforming data recorded in databases or Enter-
prise Resource Planning (ERP) systems to OCEL [10, 42]. Lastly, there are techniques
available for flattening OCEL to traditional log [11, 21]. In the exploration use case,
we have identified four sub-categories of exploration. This includes support for filtering
events based on certain criteria [11], identifying concept drift in event data [8], support-
ing variant analysis on event logs [5, 7], and splitting the log into several clusters based
on similarity in underlying behaviour [26].

4 Shahrzad Khayatbashi et al.

Table 1. Summary of studies providing tool support for OCEL or EKG

Approach UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8

OCEL [11], [10], [37], [42], [21] [11], [7], [8], [5], [26] [36] [11], [35], [36] [4], [40], [26] [6], [11], [4] [4], [3] [4], [22]

EKG [16], [14]

UC1: Transformation, UC2: Exploration, UC3: Monitoring, UC4: Performance Analysis, UC5: Discovery

UC6: Conformance Checking, UC7: Enhancement, UC8: predictive process monitoring

In the monitoring use case, Park and van der Aalst present a tool for monitoring
object-centric constraints [36]. In the performance analysis use case, a tool called OC-
PM is available for calculating the duration time of objects [11]. Additionally, perfor-
mance metrics computation is supported by [36] and [35]. In the discovery use case,
the discovery of object-centric Petri nets is supported by [40] and [4]. In addition, the
discovery of Markov Directly-Follow Multigraphs is supported by [26] by extending
the discovery of Markov Directly-Follow Graphs [27]. In the conformance checking
use case, Berti and van der Aalst provide a tool for conformance checking [11]. Also,
tool support is provided for calculating precision and fitness [4, 6]. In the enhancement
use case, tool support is provided for enhancing process models through feature extrac-
tion [3,4]. In the predictive process monitoring use case, Adams et al. [4] provide a tool
for predictive monitoring, and Gherissi et al. [22] offer a tool for predicting the next
event time, activity, and remaining sequence time.

3 Preliminaries

This section introduces the notions of the Event Knowledge Graph (EKG) and the
Object-Centric Event Log (OCEL), which serve as the foundation for defining the trans-
formation algorithm in Section 4. We explain the EKG definition using a running ex-
ample, which will also be utilized to demonstrate the approach and algorithm in the
subsequent sections of this paper.

Fig. 1 illustrates a running example that is used to explain the components of EKG.
The figure represents recorded information in an EKG for a fictitious business pro-
cess involving a customer order (o1) with two items (i1 and i2). Orders and items
are depicted as ovals (annotated with : Entity), while events are represented as rect-
angles (annotated with : Event). Each event has an activity name and a timestamp
(e.g., Submit Order and 15 : 00 for e1, respectively). Some events have the perform-
ing resource (e.g., Elin for e3). The figure illustrates the chronological sequence of
events: Submit Order, two instances of Check Availability (one for each item), and Pick
Items. The following definitions will define the elements within this graph based on
which we can define the transformation algorithm.

Definition 1 (Universes). We define the following universes to be used throughout the
paper, some of which are adopted from [39]:

– Ulbl is an infinite set of strings representing labels,
– Uatt is an infinite set of strings representing attribute names,
– Uval is an infinite set of strings representing attribute values containing the follow-

ing disjoint subsets:

Transforming Event Knowledge Graph to OCELs 5

e1

:Event

Submit
Order

15:00

e2

:Event

Check
Availability

 17:00

Alex

e3

:Event

Check
Availability

 18:00

Elin

e4

:Event

Pick
Items

 20:00

Jack

:df

type=Item,ent=i1

typ
e=

Ite
m,en

t=i
2

:df

:df
type=Item,ent=i2

:df
type=Item,ent=i1

i1

:Entity
 type=Item

:corr:corr

:corr

i2

:Entity
 type=Item

:corr :corr

:corr

o1

:Entity

 type=Order

:rel

:rel

c2
:Class
Check
Availability

:observed
c3

:Class
PickItem

c1
:Class
Submit
Order

:observed

:d
fc

type=oit

type=oit :observed

:observed

:d
fc

:corr

 type=Item

 type=Item

l1
:Log :has

:has:has

:has

Fig. 1. Running example showing event log represented in an EKG

– Ueid Ă Uval represents the universe of event identifiers,
– Utime Ă Uval represents the universe of timestamps,
– Uact Ă Uval represents the universe of activity names,
– Uot Ă Uval represents the universe of object types,
– Uoid Ă Uval represents the universe of object identifiers,

– type : Uoid Ñ Uot is a function that assigns exactly one object type to each object
identifier,

– Uomap “ tomap : Uot Ñ PpUoidq | @otPdompomapq @oidPomappotq typepoidq “

otu is the universe of all object mappings indicating which object identifiers are
included per object type4,

– Uvmap “ tvmap : Uatt Û Uvalu is the universe of value assignments,5 and
– Uevent “ Ueid ˆ Uact ˆ Utime ˆ Uomap ˆ Uvmap is the universe of events.

Definition 2 (Labeled Property Graph (LPG)). An LPG (adopted from [9, 16]) is a
tuple G “ pN,R, γ, λ, ρq, where:

– N and R are finite sets of nodes and relations, respectively,
– γ : R Ñ N ˆ N is a total function assigning a pair of nodes (representing the

source and target, respectively) to a relation,
– λ : pR Y Nq Ñ Ulbl is a total function assigning a label to a node or a relation,
– ρ : pN Y Rq ˆ Uatt Û Uval is a partial function assigning a value to an attribute

of a node or a relation.

Given an LPG G “ pN,R, γ, λ, ρq, we call E “ N Y R the set of elements in the
graph containing both nodes and relations. Considering a Label l P Ulbl , we write El to

4 PpUoidq is the powerset of the universe of object identifiers, i.e., objects types are mapped
onto sets of object identifiers.

5 Uatt Û Uval is the set of all partial functions mapping a subset of attribute names onto the
corresponding values.

6 Shahrzad Khayatbashi et al.

denote the subset of E consisting of all the elements with Label l. Formally, we show
this as El=te P E | λpeq “ lu. We use the same notation for the subsets N and R of
E (e.g., N l). Moreover, for every element e P E and every attribute name a P Uatt ,
if pe, aq P dompρq, we write e.a to refer to the value v P Uval for which it holds that
ρpe, aq “ v; if pe, aq R dompρq, then e.a denotes a special value K that is not in Uval .

Example 1. In Fig. 1, we can see ten nodes. One is annotated with e1, where we refer
to it by n and its activity name by act in this example. Thus, we can say ρpn, actq “

SubmitOrder representing that the activity name of this event is SubmitOrder. We can
also write n.act “ SubmitOrder. As this node is labeled with Event, we can say λpnq “

Event or n P NEvent. This node has a relation to another event annotated with e2. We
refer to this event by n1 and to its relation to n1 by r. We can say γprq “ pn, n1q. This
relation is labeled with df, so λprq “ df or r P Rdf .

After defining LPG, we now introduce a special kind of LPG that uses a specific
schema named Event Knowledge Graph. We define the schema as S “

␣`

has, pLog,Eventq
˘

,
`

observed, pEvent,Classq
˘

,
`

rel, pEntity,Entityq
˘

,
`

df, pEvent, Eventq
˘

,
`

dfc, pClass,Classq
˘(

.
This schema specifies the possible label of the source and the target node in each re-
lation based on the relation’s label. Each member of the set is a tuple, where the first
element indicates a possible relation’s label, and the second element indicates the la-
bel of source and target nodes, respectively. In the Event Knowledge Graph definition,
we restrict the universe of labels as Ulbl “

Ť

pl,ps,tqqPS tlu Y tsu Y ttu, meaning that
Ulbl={Event, Entity, Class, Log, observed, has, rel, df, dfc, corr}. Note that an EKG
can have multiple nodes labeled as Log, meaning that it can record events related to
multiple logs in one graph.

Definition 3 (Event Knowledge Graph (EKG)). An EKG is an LPG G “ pN,R, γ, λ, ρq,
that has the following properties6.

a) @ePNEvent pe.id P Ueid ^ e.act P Uact ^ e.time P Utimeq indicating that each node
with the label Event has attributes called id, act, and time with the value of an
event identifier, an activity name, and a timestamp, respectively,

b) @ePNEntitype.id P Uoid ^e.type P Uotq indicating that each node with the label Entity
has an attribute called id and type with the value of an object identifier and object
type, respectively,

c) The relations between nodes can be specified as @pl,ps,tqqPS, rPR with γprq“pe,e1q

pe P Ns ^ e1 P N tq ô r P Rl indicating that a relation can be labeled as specified
in schema if and only if the source and target nodes are labeled accordingly,

d) @rPRrel r.type P Uot Y tReifiedu indicating that each relation with the label rel
has attributes called type with the value of an object type or a special value called
Reified. The Reified type is used to model the relation between derived entities to
other entities.

We keep the definition of EKG to a minimum in this paper without elaborating on
detailed properties that are not needed for the transformation algorithms. For example,
we omit details on properties that should be held by df and dfc relations. More details
can be found in [14, 16].

6 The definition is aligned with definitions in [14, 16]

Transforming Event Knowledge Graph to OCELs 7

Example 2. Our running example graph fulfills the properties stated in Definition 3 (a-
b). As required by Definition 3 (a), each event in our graph has an event identifier (e.g.,
e1), an activity name (e.g., SubmitOrder for e1), a timestamp (e.g., 15 : 00 for e1).
Also, all entities have an identifier as well as a type as required by Definition 3 (b), e.g.,
the mustard-colored oval has an identifier with the value of o1 and type of Order.

Our running example graph fulfills the properties stated in Definition 3 (c-d). As
required by Definition 3 (c), every relation that its source and target are labeled with Log
and Event respectively are labeled with has, e.g., the relation between l1 and e1. The
same applies to other relations such as observed, rel, df, and dfc, where their source and
target nodes are labeled as indicated in the defined set. As required by Definition 3 (d),
every relation which is labeled by rel has an attribute named type, e.g., the relation
between i1 and o1 which has a type with the value of oit.

The following two definitions are adopted from [39] describing an OCEL, the target
format to which we will transform the described EKG.

Definition 4 (Event Projection (adopted from [39])). An event e is a tuple peid , act ,
time, omap, vmapq where eid P Ueid , act P Uact , time P Utime , omap is an object
mapping, and vmap is a value assignment. For each such event e “ peid , act , time,
omap, vmapq, we write πeidpeq to denote eid , πactpeq denotes act , πtimepeq to denote
time , πomappeq to denote omap, and πvmappeq denotes vmap.

Definition 5 (Object-Centric Event Log (OCEL) [39]). An event log L is a pair
pE,ĺEq with E Ď Uevent and ĺE Ď E ˆ E such that:

– ĺE defines a partial order (reflexive, antisymmetric, and transitive),
– @e1,e2PE πeidpe1q “ πeidpe2q ñ e1 “ e2, and
– @e1,e2PE e1 ĺE e2 ñ πtimepe1q ď πtimepe2q.

4 Approach

This section introduces a transformation algorithm that enables transforming an Event
Knowledge Graph (EKG) into a set of Object Centric Event Logs (OCELs), addressing
RQ1. In this algorithm’s definition, the following Design Choices (DC) have been made:

DC1. EKG with multiple logs: The algorithm converts an EKG with multiple logs
(i.e., an EKG with multiple nodes with the label Log) into a set of OCEL files. This
choice aligns with the OCEL standard, allowing one global log element per file [21].
An alternative option would be to include all of events in one log file and mark events
related to a log file using a vmap. However, this alternative deviates from the standard,
as the vmap value does not represent logs according to the standard. Our approach can
easily support the second design choice by merging the generated OCELs into one with
a new vmap indicating the log file.

DC2. Event Lifecycles: Unlike XES, OCEL does not explicitly define event life-
cycles which specifies events representing different states of an operational task in a
business process. As a result, we chose to omit to transform event classes (representing
lifecycles in EKG) to OCEL. Event classes in EKG can be related to multiple lifecycle

8 Shahrzad Khayatbashi et al.

states, and the explicit definition of the event lifecycle in a log file can enable the de-
velopment of lifecycle-aware algorithms, similar to algorithms developed for XES. If
OCEL is extended to support lifecycles in the future, our transformation algorithm can
easily include the transformation logic. As an alternative design choice, it is possible to
transform the lifecycle as event attributes or related objects, yet this still will not help
in the definition of lifecycle-aware algorithms as this information needs to be explicitly
supported by standards so that algorithms can take them into account.

DC3. Relations between Entities: The algorithm also omits to transform EKGs’
reified entities. OCEL does not support these relations, leaving them out of the trans-
formation process.

By making these design choices, the algorithm ensures compliance with the current
version of the OCEL standard while accommodating potential future extensions for life-
cycle support and other entity transformations. Algorithm 1 describe the transformation
logic, where the input is an EKG, and the output is a set of OCELs.

Algorithm 1 Converting EKG to OCELs
1: Input: A event knowledge graph G “ pN,R, λ, γ, ρq

2: Output: A set of OCELs O
3: Begin
4: O Ð H

5: �R Ð NEntity
ztn P NEntity

| Dn1PNEntity pn, n1
q P RRel

^ DrPRRel γprq “ pn, n1
q ^

r.type “ Reifiedu

6: for each l P NLogdo
7: E Ð H

8: for each e P NEventdo
9: omap Ð H

10: vmap Ð H

11: if DrPRHasγprq “ pl, eq then
12: E�R Ð tn P �R | @rPRCorrγprq “ pe, nqu

13: OT Ð
Ť

nPE
�R
n.type

14: for each ot P OT do
15: omappotq Ð

Ť

nPE
�R

^pn.type“otq
n.id

16: end for
17: for each att P Uattztid, act, timeudo
18: if e.att ‰K then
19: vmappattq Ð e.att
20: end if
21: end for
22: E Ð E Y tpe.id, e.act, e.time, omap, vmapqu

23: end if
24: end for
25: ĺE Ð tpe, e1

q | e, e1
P E ^ e ‰ e1

^ πtimepeq ď πtimepe1
qu

26: O Ð O Y tpE,ĺEqu

27: end for

Transforming Event Knowledge Graph to OCELs 9

Here, we elaborate on this algorithm. Line 5 assigns the set of non-reified entities
to ��R . In our running example, ��R “ ti1, i2, o1u. We exclude reified entities in EKG
as OCEL does not capture relations among entities. Thus, we only need the set of non-
reified entities. Then, the algorithm starts iterating around each log node. It defines a set
for capturing all events of the log, i.e., E (line 7). Then, for each event, it defines two
empty functions (lines 9 and 10) that will be configured accordingly: if the log has a has
relation to the event, the algorithm i) retrieves all non-reified entities to which the event
has a corr relation and assigns them to E�R (line 12), and ii) retrieves the type of all
retrieved entities and assigns them to OT (line 13). If we look at our running example,
this algorithm sets the mentioned variables for e1 accordingly: E�R “ ti1, i2, o1u,
OT “ tOrder, Itemu.

Then, the algorithm sets omap and vmap through two loops. The first loop config-
ures the omap function by relating each retrieved object type to a set of related object
identifiers (line 15). This means that, omappOrderq “ to1u and omappItemq “ ti1, i2u

for e1. The second loop configures the vmap function by assigning all event’s attributes
(except for id, act, and time) to vmap (line 19). For event e1, vmap will be empty as
the event has no other attributes. However, if we consider e3, vmappResourceq “ Elin.

Finally, the algorithm updates the variable capturing all events within the process-
ing log, i.e., E (line 22). For our example when processing e1, E “ pe1,SubmitOrder,
15 :00, tomappOrderq“to1u, omappItemq“ti1, i2uu, tuq. Iterating all these steps will
produce an OCEL, and line 26 retrieves the set of OCELs transformed from the EKG.

5 Evaluation

This section presents the evaluation results of comparing transformed OCEL with EKG.
Through this evaluation, we analyze the differences and similarities between these two
approaches. A comparative performance analysis is also conducted between EKG and
OCEL, further investigating the disparities and similarities between these approaches.

5.1 Data processing

The transformation algorithm was implemented as part of an open-source Python li-
brary 7, called neo4pm 8. For evaluation, EKG was transformed to OCEL using our
implemented algorithm, and the transformed logs are available publicly at [28–32].
Due to the large size of the log files, the transformation was performed on a server.
Subsequently, EKG and OCEL were evaluated and compared on a laptop, replicating
the environment typically used by analysts.

Data transformation: To evaluate our approach, we transformed five open-access real-
world EKG: BPIC14 [17], BPIC15 [18], BPIC16 [19], BPIC17 [20], and BPIC19 [15].
As a result, we obtained nine OCELs (one OCEL file for each EKG, except for BPIC15,
which produced five OCEL files).

7 The library can be installed using !pip install neo4pm
8 The source code is available at https://github.com/neo4pm/neo4pm

https://github.com/neo4pm/neo4pm

10 Shahrzad Khayatbashi et al.

Evaluation setup: For the evaluation setup, we used a laptop with the following spec-
ifications: two 6-core Intel Core i9 CPUs running at 2.90GHz, 32 GB of RAM, a 1
TB HDD, and a 64-bit Windows 11 Enterprise operating system. Docker (v.4.17.1) was
installed on the laptop to host the running evaluations. Neo4j (community edition 3.5)
and PM4Py (v.2.7.3) were utilized for the evaluations [12, 13].

5.2 Information preserving evaluation

Table 2 illustrates the information-preserving evaluation results, comparing the num-
ber of different elements in the EKG and the transformed OCEL. This table captures
the count of Logs, Events, non-reified Entities (objects in OCEL), Classes (activity
names in OCEL), Observed relations (showing the activity lifecycles), corr relations,
and direct-follow relations (df), shown as columns in the table. The rows represent the
evaluation result for different BPICs. BPIC15 consists of multiple logs, so the numbers
are given in detail for each log for OCEL, and they are aggregated to be compared with
EKG. In the subsequent discussion, we will explore the differences observed in these
elements.

As can be seen in the table, information preservation is evident for all BPICs except
BPIC15 and BPIC17, which exhibit some differences compared to the others. BPIC15
involves process data associated with multiple log files, leading to the transformation

Table 2. Information preserving evaluation result

Log # Event # Entity˚ # Class # observed # corr˚ # df

BPIC 14
OCEL 1 690,622 228,885 330 690,622 2,732,213 2,503,328

EKG 1 690,622 228,885 330 690,622 2,732,213 2,503,328

BPIC 15

OCEL1 1 52,217 1,269 289 52,217 208,868 207,599

OCEL2 1 443,54 859 304 44,354 177,416 176,557

OCEL3 1 59,681 1,465 277 59,681 238,724 237,259

OCEL4 1 47,293 1,084 272 47,293 189,172 188,088

OCEL5 1 59,083 1,202 285 59,083 236,332 235,130

OCEL Sum: 262,628 5,879 1,427 262,628 1,050,512 1,044,633

EKG 5 262,628 5,862 356 262,628 1,050,512 1,044,650

BPIC 16
OCEL 1 7,360,146 748,913 620 7,360,146 36,430,880 35,681,967

EKG 1 7,360,146 748,913 620 7,360,146 36,430,880 35,681,967

BPIC 17
OCEL 1 1,202,267 106,162 26 1,202,267 2,404,534 2,298,372

EKG 1 1,202,267 106,162 92 2,404,534 2,404,534 2,298,372

BPIC 19
OCEL 1 1,595,923 330,685 42 1,595,923 5,984,602 5,653,917

EKG 1 1,595,923 330,685 42 1,595,923 5,984,602 5,653,917

#: Number of, ˚: Non-Reified, OCELn: nth sublog

Transforming Event Knowledge Graph to OCELs 11

of EKG into multiple OCEL log files (as followed based on DC1.). EKG for BPIC17,
on the other hand, captures information regarding the lifecycle of each event. Further
elaboration on these differences will be provided below.

Differences in BPIC 15: Three differences can be observed when comparing the EKG
with the generated OCELs, i.e., the difference in the total number of Entities (referred
to as Objects in OCEL), Classes, and directly-follows relations.

The difference in the total number of Entities and Classes is the result of splitting
the data to multiple OCELs for BPIC15, as shown in the Table 2, which is due to the
limitation of OCEL to capture multiple logs. Consequently, some entities are repeated
across different log files, leading to double counting when aggregating the numbers.
The same applies to the count of classes. However, these differences do not affect the
analysis, as each OCEL represents a subset of the log.

An additional disparity lies in the number of directly-follows relations. These re-
lations significantly impact process discovery and conformance-checking algorithms,
warranting a detailed analysis to ascertain the reasons behind the difference. We iden-
tified 860 missing directly-follows relations after transforming the EKG BPIC15 into
OCEL. Notably, this number does not align with the difference reported in the table.
The reason is that directly-follows relations need to be calculated at runtime for a given
OCEL. This is different from EKG which materializes these relations. Hence, addi-
tional directly-follows relations may be inferred in OCEL that were not present in the
source EKG. To illustrate this case, Fig. 2 presents a sub-graph extracted from the EKG
for BPIC15, which allows us to delve deeper into the aforementioned issue.

In Fig. 2, we can observe two types of directly-follows (DF) relations: intra-log
and inter-log directly-follows relations. The two red DF flows represent intra-log rela-
tions, indicating that these relations exist among events within a single log, i.e., events
related to BPIC15 1. Additionally, there is one intra-log directly-follows relation in-
volving events related to BPIC15 3, denoted by a thin mustard-colored (DF) relation.
The figure’s two thick mustard-colored DF relations represent inter-log directly-follows
relations. These relations occur when the source and target events are associated with
different logs in the graph.

Fig. 3 showcases the directly-follows relations discovered using PM4Py python li-
brary [12] with the transformed OCEL specifically for BPIC15 1. Several similarities
and differences can be observed in comparison to Fig. 2. i) The two intra-log directly-
follows relations for BPIC15 1 are preserved in the transformed OCEL. ii) However,
the two inter-log directly-follows relations are lost, indicating that they are not cap-
tured in the transformed OCEL. iii) An additional intra-log directly-follows relation
is introduced between the register submission date request and enter senddate
acknowledgement events for the Case R object type. Please note that we omit to dis-
cuss the intra-log directly-follows relation for BPIC15 3 in this context, as it is present
in the other log file.

The absence of the two inter-log relations in the transformed OCEL is indeed ex-
pected, as OCEL does not support multi-log event storage. Based on this observation,
we can conclude that:

12 Shahrzad Khayatbashi et al.

D
F

DF

CORR

CORR HASHAS HAS

DF

CORR

CORR

CORR

CORR
HAS

DF

HASCORR

DF
Case_R

BPIC15_1 Application

enter senddate
procedure

confirmation

enter senddate
acknowledge…register

submission date
request

BPIC15_3

registrer date of
publishing
received
request

treat subcases
completeness

Fig. 2. Intra- and inter- log directly-follows relations (shown by thin and thick flows respectively)
for a part of BPIC15 1 & for BPIC15 3 in the Event Knowledge Graph

register submission
date requestE=1

enter senddate procedure
confirmationE=1Application EC=1 enter senddate

acknowledgementE=1Case_R EC=1

Application EC=1

Case_R
Case_R EC=1

Case_R EC=1

Application Application EC=1

Fig. 3. Inter-log directly-follows relations for a part of BPIC15 1 equivalent to Fig. 2

Finding 1. Analyzing a process using multiple OCEL logs (as followed based on
DC1.) can result in missing the inter-log relations. On the one hand, an Event
Knowledge Graph (EKG) supports analyzing multiple logs simultaneously, mean-
ing it will not miss these relations; on the other hand, merging multiple logs into
one OCEL and keeping the log information as event attributes can be considered as
a technique to handle this shortcoming.

As previously mentioned, some directly-follows relations in the transformed log
were not present in the original EKG. For instance, the relation between register sub-
mission date request and enter senddate acknowledgement for the Case R ob-
ject type was not captured in the EKG. The reason behind this discrepancy lies in the
runtime computation of directly-follows relations in Object-Centric Process Mining. In
the EKG, two other events were occurring between these two events, resulting in the
absence of a direct relation. However, when we project events related to a specific event
log, events from other logs are removed, leading to different computations of directly-
follows relations among events.

The addition of directly-follows relations can also be observed when filtering event
logs based on certain event attributes. An important difference arises when filtering out
specific events, such as the enter senddate procedure confirmation event in the
EKG (as depicted in Fig. 2). In this case, there would be no directly-follows (DF)
relation between the register submission date request and enter senddate ac-
knowledgement events for the Application entity. However, applying the same fil-
ter in OCEL would result in a new directly-follows (DF) relation between these two

Transforming Event Knowledge Graph to OCELs 13

events. This difference arises because directly-follows relations in OCEL are calculated
at runtime based on existing timestamps.

It is important to note that we do not conclude which approach is correct or incor-
rect. However, this discrepancy is a significant difference that analysts should be aware
of to avoid drawing incorrect conclusions.

– Finding 2. Inter-log directly-follows relations are not preserved when transforming
an EKG to multiple OCELs (as followed based on DC1.). If those relations matter
in the analysis, an analyst may follow the alternative design choice stated in DC1.

– Finding 3. Analyzing processes with multiple logs using OCEL can include ad-
ditional directly-follows relations due to the absence of inter-log directly-follows
relations. The alternative design choice can be followed to overcome this challenge
as stated in DC1.

– Finding 4. Filtering OCEL event logs based on specific events can introduce ex-
tra directly-follows relations due to the lack of filtered events, similar to the case
of filtering traditional logs. These relations are not added when analyzing event
knowledge graphs, as all directly-follows relations are pre-calculated.

Differences in BPIC 17: In the EKG, each event is associated with two classes. For
instance, event 9 with the activity name O Created is linked to two classes in the EKG,
both of which have the same name as the activity. One class has the type Activity with
the same name, while the other class has the type Activity+Lifecycle with the lifecycle
value of COMPLETE. However, when transforming to OCEL, the information regard-
ing the lifecycle is not taken into transformation since the OCEL standard does not
include lifecycle specifications.

– Finding 5. The OCEL standard does not include support for the event lifecycle,
but it is supported in EKG. One option to overcome this limitation is to map this
information as event’s values or related objects as explained in alternative choice
for DC2.

5.3 Performance evaluation

Table 3 shows the performance comparison result of processing event data in EKG and
OCEL. The column labeled “Loading Time” in the table represents the time required to
prepare the log file for analysis. For OCEL, it indicates the time taken to load the log
file into memory. For the EKG, it refers to the time required to load the dump file into
Neo4j.

– Finding 6. Analyzing OCEL using PM4Py requires the log file to fit within the
computer’s memory. In contrast, EKG (stored in Neo4j) can handle large data sizes
without such memory limitations because a part of graph content is loaded into
memory as needed and processed on demand [1], as also demonstrated in [25].
This distinction is crucial when dealing with big data in process analysis as it can
enable scaling process mining in practice.

14 Shahrzad Khayatbashi et al.

Table 3. Performance comparison (in seconds)

Loading

Time

Query Execution Time

#Log #Event #Entity˚ #Class #observed #corr˚ #df

BPIC 14
OCEL 24.86 0.00 0.00 0.00 0.16 0.20 0.00 124.12

EKG 53.59 0.02 0.02 2.37 0.02 0.02 2.79 0.03

BPIC 15
OCEL 9.52 0.00 0.00 0.00 0.05 0.04 0.00 37.59

EKG 25.97 0.02 0.02 0.41 0.01 0.01 1.52 0.03

BPIC 16
OCEL 349.95 0.00 0.00 0.00 2.19 2.44 0.00 1845.80

EKG 166.02 0.02 0.02 7.32 0.01 0.01 67.71 0.03

BPIC 17
OCEL 38.96 0.00 0.00 0.00 0.28 0.33 0.00 181.44

EKG 45.03 0.02 0.02 3.24 0.01 0.01 3.53 0.03

BPIC 19
OCEL 57.96 0.00 0.00 0.00 0.22 0.24 0.00 277.14

EKG 62.48 0.02 0.02 2.87 0.02 0.02 7.23 0.03

˚: Non-Reified

– Finding 7. Loading logs into EKG is a one-time process, similar to loading data
into databases. Once the data is loaded, multiple analyses can be performed with-
out reloading the data. However, with OCEL and PM4Py, the analyst needs to con-
sider the loading time for every new analysis. Keeping large datasets in memory
for extended periods may not be efficient, requiring careful consideration for each
analysis conducted with OCEL and PM4Py when dealing with big data.

The columns labeled #Log, #Event, and #Entity˚ represent the query execution
times for retrieving the number of logs, events, and non-derived entities in OCEL
and EKG, respectively. The queries on OCEL are extremely fast, with execution times
rounded to zero. On the other hand, the query execution time for EKG is also reason-
able. In the worst case, it takes approximately 7 seconds for BPIC16, which is a sub-
stantial EKG. Similar observations can be made for #Class, and #observed. However,
there is one exception for BPIC16 in the case of #corr. Retrieving the number of #corr
elements takes around one minute due to the size of the EKG, and the additional filter-
ing of #corr relations for non-reified entities significantly increases the query execution
time.

Considering the execution query times, a significant difference is observed in cal-
culating the number of directly-follows relations in the log file. These relations play
a crucial role as fundamental information for many process mining algorithms. EKG
outperforms OCEL in this aspect. This is because all directly-follows relations are ma-
terialized in EKG, whereas in OCEL, these relations are computed at runtime during
processing. Based on this observation, we can conclude that:

– Finding 8. Discovering directly-follows relations on the entire log file is more effi-
cient (performance-wise) in the EKG than OCEL. This is because the relations are

Transforming Event Knowledge Graph to OCELs 15

Table 4. Execution time by filtering (in seconds)
Filters on:

Entity Type Entity

timestamp No Filter timestamp No Filter timestamp

BPIC 14
OCEL 0.73 0.10 0.13 0.10 0.13

EKG 12.19 (0.16) 0.46 (0.45) 0.17 (0.07) 0.15 (0.07) 0.12 (0.08)

BPIC 15
OCEL 0.27 0.10 0.08 0.06 0.10

EKG 3.97 (0.18) 0.07 (0.09) 0.09 (0.07) 0.12 (0.07) 0.09 (0.09)

BPIC 16
OCEL 8.59 1.85 1.75 1.77 1.78

EKG 109.03 (0.16) 1.99 (1.28) 0.45 (0.07) 0.11 (0.07) 0.10 (0.08)

BPIC 17
OCEL 1.49 0.20 0.23 0.21 0.22

EKG 15.89 (0.18) 0.53 (0.51) 0.20 (0.08) 0.12 (0.09) 0.09 (0.11)

BPIC 19
OCEL 1.26 0.15 0.16 0.14 0.18

EKG 31.26 (0.16) 0.77 (0.79) 0.26 (0.08) 0.13 (0.07) 0.10 (0.10)

The numbers in parentheses are execution time after creating an index on the timestamp.

materialized in EKG, whereas in OCEL, they are computed at runtime. The pre-
calculation of directly-follows relations in the EKG enhances the efficiency and
performance of process mining analyses.

Applying process mining without appropriate filters can lead to unhelpful and com-
plex process models, often called “spaghetti” models, which is considered a fundamen-
tal weakness in most early process mining algorithms [41]. Hence, filtering event logs
and focusing on a subset of directly-follows relations is common practice. In our paper,
we compare the performance of retrieving different subsets of directly-follows relations
from EKG and OCEL on all listed BPICs. We employ common filtering operations such
as i) dicing the log based on a timestamp, ii) slicing the log based on an entity type, iii)
slicing and dicing the log based on a timestamp and an entity type, iv) slicing the log
based on an entity, and v) slicing and dicing the log based on a timestamp and an entity.
The performance of slicing and dicing based on timestamp can be improved in neo4j if
an index is defined for the timestamp. However, this solution may not be applicable for
all attribute types, e.g., if we slice or dice based on the similarity of a textual attribute.
Thus, we will test both approaches here. For the timestamp, we follow a pessimistic
approach by selecting a timestamp and an entity type that does not exist in the data,
which mandates traversing the whole graph when it has no index. Table 4 shows the
performance comparison result of retrieving directly-follows relations by applying the
above filtering. The numbers in the parenthesis represent the total query time execution
after creating an index on the timestamp.

From the third column, it is evident that the performance of retrieving directly-
follows relations using PM4Py is significantly better compared to EKG when applying
a filter solely based on the event’s timestamp without the index. If the index can be
defined, EKG has better performance. The main reason behind this difference is that
applying such a filter in the EKG without the index necessitates traversing all nodes in

16 Shahrzad Khayatbashi et al.

the graph, resulting in a time-consuming operation. If the index can be used, EKG will
not need to traverse the whole graph. On the other hand, PM4Py executes this operation
by processing data in memory.

As observed from the remaining columns, the disparity mentioned above becomes
less significant when filtering the log based on other log elements, such as entity type
(referred to as object type in OCEL) and entities (referred to as objects). In summary,
we can conclude with the following findings:

– Finding 9. Analyzing a process using an OCEL log is much more efficient than an
EKG without a relevant index when filtering only by dicing the data. In case that
index can be defined, EKG has better performance.

– Finding 10. There is no significant performance difference when analyzing a pro-
cess using sliced data for an OCEL or EKG.

There are some limitations and threats to validity that shall be discussed as well.
We shall emphasize that some findings can get affected by following alternative design
choices as discussed in this section. Currently, we limit the comparison to taken design
choices, but we will extend the comparison by considering alternative choices in the
future. Also, we shall emphasize that our analysis is based on the current version of the
OCEL standard. Our findings and other investigation can influence the extension of this
standard in the future, which can relax or change some of the identified findings.

6 Concluding Remarks

This study conducted a comparative analysis of multi-dimensional process analysis us-
ing two contemporary conceptual models, namely Object-Centric Event Log (OCEL)
and Event Knowledge Graph (EKG). A novel algorithm was introduced to transform
EKG into the set of OCEL, which was implemented in Python as part of an open-source
library. Five real log files represented in EKG were transformed into OCEL using this
algorithm, and the resulting log files were utilized for the comparative analysis.

A total of ten findings emerged from this study, with several noteworthy ones high-
lighted here. The research shows that transforming EKG containing multiple log files
into separate OCELs can cause a loss of inter-log relations between events. Moreover,
the study demonstrated differences in analyzing directly-follows relations, attributing
them to the materialization of these relations in the EKG while requiring runtime calcu-
lations for OCEL. Additionally, it was found that analyzing a process using an OCEL
log exhibited higher efficiency compared to an EKG without any index when only dic-
ing the data. Also, it shows how the possibility of applying an index can shift the ad-
vantage toward EKG.

As a future direction, it will be interesting to investigate how the OCEL standard can
be extended to address some of the reported limitations. It is also interesting to evaluate
the difference between these two approaches in calculating directly-follows relations in
real use cases where we can have access to stakeholders to evaluate those relations with
the help of process experts.

Acknowledgements. Khayatbashi’s and Hartig’s contributions to this work were funded
by Vetenskapsrådet (the Swedish Research Council, project reg. no. 2019-05655).

Transforming Event Knowledge Graph to OCELs 17

References

1. The neo4j operations manual v5: Performance: Disks, ram and other tips.
https://neo4j.com/docs/operations-manual/current/performance/
disks-ram-and-other-tips. Accessed: 2023-08-05.

2. IEEE Task Force on Process Mining. XES Standard Definition, 2013. http://www.
xes-standard.org.

3. J. N. Adams, G. Park, S. Levich, D. Schuster, and W. van der Aalst. A framework for ex-
tracting and encoding features from object-centric event data. In Service-Oriented Comput-
ing: 20th International Conference, ICSOC 2022, Seville, Spain, November 29–December 2,
2022, Proceedings, pages 36–53. Springer, 2022.

4. J. N. Adams, G. Park, and W. M. van der Aalst. ocpa: A python library for object-centric
process analysis. Software Impacts, 14:100438, 2022.

5. J. N. Adams, D. Schuster, S. Schmitz, G. Schuh, and W. van der Aalst. Defining cases
and variants for object-centric event data. In 2022 4th International Conference on Process
Mining (ICPM), pages 128–135. IEEE, 2022.

6. J. N. Adams and W. van der Aalst. Precision and fitness in object-centric process mining. In
2021 3rd International Conference on Process Mining (ICPM), pages 128–135. IEEE, 2021.

7. J. N. Adams and W. van der Aalst. Oc π: object-centric process insights. In Application and
Theory of Petri Nets and Concurrency: 43rd International Conference, PETRI NETS 2022,
Bergen, Norway, June 19–24, 2022, Proceedings, pages 139–150. Springer, 2022.

8. J. N. Adams, S. J. van Zelst, T. Rose, and W. van der Aalst. Explainable concept drift in
process mining. Information Systems, page 102177, 2023.

9. R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč. Foundations of
modern query languages for graph databases. ACM Computing Surveys (CSUR), 50(5):1–
40, 2017.

10. A. Berti, G. Park, M. Rafiei, and W. van der Aalst. An event data extraction approach from
sap erp for process mining. In ICPM Workshops, volume 433, pages 255–267, 2021.

11. A. Berti and W. van der Aalst. Oc-pm: analyzing object-centric event logs and process
models. International Journal on Software Tools for Technology Transfer, 25(1):1–17, 2023.

12. A. Berti, S. van Zelst, and D. Schuster. Pm4py: A process mining library for python. Software
Impacts, page 100556, 2023.

13. A. Berti, S. J. Van Zelst, and W. van der Aalst. Process mining for python (pm4py): bridging
the gap between process-and data science. arXiv preprint arXiv:1905.06169, 2019.

14. S. Esser and D. Fahland. Multi-dimensional event data in graph databases. Journal on Data
Semantics, 10(1-2):109–141, 2021.

15. D. Fahland. Event Graph of BPI Challenge 2019. https://data.4tu.nl/
articles/dataset/Event_Graph_of_BPI_Challenge_2019/14169614/
1, 2021.

16. D. Fahland. Process mining over multiple behavioral dimensions with event knowledge
graphs. In Process Mining Handbook, pages 274–319. Springer, 2022.

17. D. Fahland and S. Esser. Event Graph of BPI Challenge 2014. https:
//data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_
2014/14169494/1, 2021.

18. D. Fahland and S. Esser. Event Graph of BPI Challenge 2015. https:
//data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_
2015/14169569/1, 2021.

19. D. Fahland and S. Esser. Event Graph of BPI Challenge 2016. https://data.4tu.nl/
articles/dataset/Event_Graph_of_BPI_Challenge_2016/14164220, 4
2021.

https://neo4j.com/docs/operations-manual/current/performance/disks-ram-and-other-tips
https://neo4j.com/docs/operations-manual/current/performance/disks-ram-and-other-tips
http://www.xes-standard.org
http://www.xes-standard.org
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2019/14169614/1
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2019/14169614/1
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2019/14169614/1
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2014/14169494/1
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2014/14169494/1
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2014/14169494/1
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2015/14169569/1
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2015/14169569/1
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2015/14169569/1
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2016/14164220
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2016/14164220

18 Shahrzad Khayatbashi et al.

20. D. Fahland and S. Esser. Event Graph of BPI Challenge 2017. https:
//data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_
2017/14169584/1, 2021.

21. A. F. Ghahfarokhi, G. Park, A. Berti, and W. M. van der Aalst. Ocel: A standard for object-
centric event logs. In New Trends in Database and Information Systems: ADBIS 2021 Short
Papers, Doctoral Consortium and Workshops: DOING, SIMPDA, MADEISD, MegaData,
CAoNS, Tartu, Estonia, August 24-26, 2021, Proceedings, pages 169–175. Springer, 2021.

22. W. Gherissi, J. El Haddad, and D. Grigori. Object-centric predictive process monitoring. In
Service-Oriented Computing–ICSOC 2022 Workshops: ASOCA, AI-PA, FMCIoT, WESOACS
2022, Sevilla, Spain, November 29–December 2, 2022 Proceedings, pages 27–39. Springer,
2023.

23. C. W. Gunther and H. Verbeek. Xes-standard definition. 2014.
24. A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. d. Melo, C. Gutierrez, S. Kirrane,

J. E. L. Gayo, R. Navigli, S. Neumaier, et al. Knowledge graphs. ACM Computing Surveys
(CSUR), 54(4):1–37, 2021.

25. A. Jalali. Graph-based process mining. In Process Mining Workshops: ICPM 2020 In-
ternational Workshops, Padua, Italy, October 5–8, 2020, Revised Selected Papers 2, pages
273–285. Springer, 2021.

26. A. Jalali. Object type clustering using markov directly-follow multigraph in object-centric
process mining. IEEE Access, 10:126569–126579, 2022.

27. A. Jalali, P. Johannesson, E. Perjons, Y. Askfors, A. Rezaei Kalladj, T. Shemeikka, and
A. Vég. dfgcompare: a library to support process variant analysis through markov models.
BMC Medical Informatics and Decision Making, 21(1):1–13, 2021.

28. S. Khayatbashi, O. Hartig, and A. Jalali. BPI Challenge 2014 (OCEL). https://doi.
org/10.4121/7d097cec-7304-4b85-9e78-a3ca1cc44c40, 2023.

29. S. Khayatbashi, O. Hartig, and A. Jalali. BPI Challenge 2015 (OCEL). https://doi.
org/10.4121/110d2fcf-b5e1-494a-a588-896a0a21e60a, 2023.

30. S. Khayatbashi, O. Hartig, and A. Jalali. BPI Challenge 2016 (OCEL). https://doi.
org/10.4121/95613fb2-29a5-49dc-b196-0948cf96cd7c, 2023.

31. S. Khayatbashi, O. Hartig, and A. Jalali. BPI Challenge 2017 (OCEL). https://doi.
org/10.4121/6889ca3f-97cf-459a-b630-3b0b0d8664b5, 2023.

32. S. Khayatbashi, O. Hartig, and A. Jalali. BPI Challenge 2019 (OCEL). https://doi.
org/10.4121/46a7e15b-10c7-4ab2-988d-ee67d8ea515a, 2023.

33. G. Li, R. M. de Carvalho, and W. van der Aalst. Automatic discovery of object-centric be-
havioral constraint models. In Business Information Systems: 20th International Conference,
BIS 2017, Poznan, Poland, June 28–30, 2017, Proceedings 20, pages 43–58. Springer, 2017.

34. G. Li, E. G. L. de Murillas, R. M. de Carvalho, and W. van der Aalst. Extracting object-
centric event logs to support process mining on databases. In Information Systems in the Big
Data Era: CAiSE Forum 2018, Tallinn, Estonia, June 11-15, 2018, Proceedings 30, pages
182–199. Springer, 2018.

35. G. Park, J. N. Adams, and W. van der Aalst. Opera: object-centric performance analysis. In
Conceptual Modeling: 41st International Conference, ER 2022, Hyderabad, India, October
17–20, 2022, Proceedings, pages 281–292. Springer, 2022.

36. G. Park and W. van der Aalst. Monitoring constraints in business processes using object-
centric constraint graphs. In Process Mining Workshops: ICPM 2022 International Work-
shops, Bozen-Bolzano, Italy, October 23–28, 2022, Revised Selected Papers, pages 479–492.
Springer, 2023.

37. A. Rebmann, J.-R. Rehse, and H. Van der Aa. Uncovering object-centric data in classical
event logs for the automated transformation from xes to ocel. In Business Process Man-
agement: 20th International Conference, BPM 2022, Münster, Germany, September 11–16,
2022, Proceedings, pages 379–396. Springer, 2022.

https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2017/14169584/1
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2017/14169584/1
https://data.4tu.nl/articles/dataset/Event_Graph_of_BPI_Challenge_2017/14169584/1
https://doi.org/10.4121/7d097cec-7304-4b85-9e78-a3ca1cc44c40
https://doi.org/10.4121/7d097cec-7304-4b85-9e78-a3ca1cc44c40
https://doi.org/10.4121/110d2fcf-b5e1-494a-a588-896a0a21e60a
https://doi.org/10.4121/110d2fcf-b5e1-494a-a588-896a0a21e60a
https://doi.org/10.4121/95613fb2-29a5-49dc-b196-0948cf96cd7c
https://doi.org/10.4121/95613fb2-29a5-49dc-b196-0948cf96cd7c
https://doi.org/10.4121/6889ca3f-97cf-459a-b630-3b0b0d8664b5
https://doi.org/10.4121/6889ca3f-97cf-459a-b630-3b0b0d8664b5
https://doi.org/10.4121/46a7e15b-10c7-4ab2-988d-ee67d8ea515a
https://doi.org/10.4121/46a7e15b-10c7-4ab2-988d-ee67d8ea515a

Transforming Event Knowledge Graph to OCELs 19

38. W. van der Aalst. Process mining: data science in action, volume 2. Springer, 2016.
39. W. van der Aalst. Object-centric process mining: Dealing with divergence and convergence

in event data. In Software Engineering and Formal Methods: 17th International Conference,
SEFM 2019, Oslo, Norway, September 18–20, 2019, Proceedings 17, pages 3–25. Springer,
2019.

40. W. van der Aalst and A. Berti. Discovering object-centric petri nets. Fundamenta informat-
icae, 175(1-4):1–40, 2020.

41. W. van der Aalst and C. W. Gunther. Finding structure in unstructured processes: The case
for process mining. In Seventh International Conference on Application of Concurrency to
System Design (ACSD 2007), pages 3–12. IEEE, 2007.

42. J. Xiong, G. Xiao, T. E. Kalayci, M. Montali, Z. Gu, and D. Calvanese. A virtual knowledge
graph based approach for object-centric event logs extraction. In Process Mining Workshops:
ICPM 2022 International Workshops, Bozen-Bolzano, Italy, October 23–28, 2022, Revised
Selected Papers, pages 466–478. Springer, 2023.

	Transforming Event Knowledge Graph to Object-Centric Event Logs: A Comparative Study for Multi-dimensional Process Analysis
	Introduction
	Related work
	Preliminaries
	Approach
	Evaluation
	Data processing
	Information preserving evaluation
	Performance evaluation

	Concluding Remarks

