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Abstract

The runtime optimization of federated SPARQL query engines is of central importance to ensure the usability of the
Web of Data in real-world applications. The efficient selection of sources (SPARQL endpoints in our case) as well as
the generation of optimized query plans belong to the most important optimization steps in this respect. This paper
presents CostFed, an index-assisted federation engine for federated SPARQL query processing. CostFed makes use of
statistical information collected from endpoints to perform efficient source selection and cost-based query planning. In
contrast to the state of the art, it relies on a non-linear model for the estimation of the selectivity of joins. Therewith, it is
able to generate better plans than the state-of-the-art federation engines. Our experiments on the FedBench benchmark
shows that CostFed is 3 to 121 times faster than the current federation engines.

Keywords: SPARQL, RDF, federated query processing, query optimization

1. Introduction

Two challenges must be addressed when optimizing
federated query processing. The first is the generation of
efficient query plans: For a given query, there are most
likely several possible plans that a federation system
may consider executing to gather results. These plans
have different costs in terms of the amount of resources
they necessitate and the overall time necessary to execute
them. Detecting the most cost-efficient query plan for
a given query is hence one of the key challenges in fed-
erated query processing. In addition, for a given query,
an optimized selection of sources is one of the key steps
towards the generation of efficient query plans [11]. A
poor source selection can lead to increases of the overall
query processing time [11].

Current cardinality/cost-based SPARQL endpoint fed-
eration approaches [2, 5, 16] address the first challenge
by making use of average selectivities to estimate the
cardinality of triple patterns. Hence, they assume that
the resources pertaining to a predicate are uniformly
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distributed. However, previous work [4] shows that real
RDF datasets do not actually abide by uniform frequency
distributions1. An example of the skew in the distribution
of subject frequencies for the predicate foaf:name in
DBpedia2015-10 is shown in Figure 2. The assumption
of a uniform distribution of subjects or objects across
predicates can lead to a poor estimation of the cardi-
nality of triple patterns when a high-frequency resource
(i.e., a resource that occurs in a large number of triples)
is used in that triple pattern. Consequently, the query
planning can be significantly affected as suggested by
our evaluation (see Section 7). To address the second
challenge, most SPARQL query federation approaches
[2, 5, 7, 14, 16, 12] rely on a triple pattern-wise source
selection (TPWSS) to optimize their source selection.
The goal of the TPWSS is to identify the set of sources
that are relevant for each individual triple pattern of a
query [12]. However, it is possible that a relevant source
does not contribute (formally defined in section 5.1) to
the final result set of a query. This is because the re-
sults from a particular data source can be excluded after
performing joins with the results of other triple patterns
contained in the same query. The join-aware TPWSS
strategy has been shown to yield great improvement

1Our analysis of FedBench confirms that the resources in FedBench
are not uniformly distributed. See https://github.com/AKSW/
CostFed/tree/master/stats
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[1, 11].
In this work, we present CostFed,2 an index-assisted

SPARQL endpoint federation engine. CostFed addresses
the two challenges aforementioned: CostFed’s query
planning is based on estimating query costs by using
selectivity information stored in an index. In contrast
to the state of the art, CostFed takes the skew in distri-
bution of subjects and objects across predicates into ac-
count. In addition, CostFed includes a trie-based source
selection approach which is a join-aware approach to
TPWSS based on common URI prefixes. Overall, our
contributions are as follows: (1) We present a source
selection algorithm based on labelled hypergraphs [11],
which makes use of data summaries for SPARQL end-
points based on most common prefixes for URIs. We
devise a pruning algorithm that allows discarding irrel-
evant sources based on common prefixes used in joins.
(2) We propose a cost-based query planning approach
which makes use of cardinality estimations for (a) triple
patterns as well as for (b) joins between triple patterns.
We considered the skew in resource frequency distri-
bution by creating resource buckets (ref. see figure 2)
with different cardinality estimation functions. Our join
implementation is based on both bind [2, 14, 5] and sym-
metric hash joins[3]. (3) We compare CostFed with the
state-of-the-art federation engines ANAPSID [1], Sema-
Grow [2], SPLENDID [5], HiBISCuS [11], and FedX
[14]. Our results show that we outperform these engines
by (a) reducing the number of sources selected (without
losing recall) and by (b) reducing the source selection
time as well as the overall query runtime on the majority
of the FedBench [13] queries. Our results on the more
complex queries from LargeRDFBench3[9] confirm the
results on FedBench.

2. Related Work

DARQ [7] is an index-only [10] federated query en-
gine that combines query rewriting mechanisms and
nested loop join for query optimization. SPLENDID [5]
makes use of a hybrid (index+ASK) [10] source source
selection approach and a cost-based optimization using
datasets statistics. While SPLENDID makes use of bind
and hash joins [10], it does not perform a join-aware
source selection and thus often overestimates the number
of relevant sources [11, 10]. FedX [14] is an index-free
[10] approach which only makes use of ASK queries

2CostFed is open-source and available online at https://
github.com/AKSW/CostFed.

3LargeRDFBench: https://github.com/AKSW/
largerdfbench

for source selection. In contrast to DARQ, the number
of endpoints requests is greatly reduced by using bind
joins in a block nested loop fashion [14]. ANAPSID [1]
performs a hybrid as well as a join-aware source selec-
tion approach. ANAPSID implements adaptive group
and adaptive dependent joins [10]. SemaGrow [2] is an
index-assisted approach with source selection adapted
from SPLENDID. The query planning is based on VOID
statistics about datasets. SemaGrow implements bind,
hash, and merge joins. LHD [16] is an index-assisted
and cardinality-based approach with the aim to maxi-
mize the parallel execution of sub-queries. QTree [6] is
an index structure which first transform dataset triples
into a numerical data space (applying hash functions)
and then index the resulting data items with a data sum-
mary. A more exhaustive overview of these systems can
be found in [10]. Note that the approaches above do not
consider the skew distribution of subjects and objects
across predicates.

CostFed is most closely related to HiBISCuS [11] in
terms of source selection. HiBISCuS is a join-aware
approach to TPWSS, which was proposed with the aim
to only select those sources that actually contribute to
the final result set of the query. This approach makes
use of the different URIs authorities4 to prune irrelevant
sources during the source selection. While HiBISCuS
can significantly remove irrelevant sources [11], it fails
to prune those sources which share the same URI au-
thority. For example, all the Bio2RDF sources contains
the same URI authority. We address the drawback of
HiBISCuS by proposing a trie-based source selection
approach. By moving away from authorities, CostFed
is flexible enough to distinguish between URIs from
different datasets that come from the same namespace
(e.g., as in Bio2RDF). In addition, we propose a cost-
based query planner that takes into account the skew
in frequency distribution of subject or object resources
pertaining to a predicate.

3. Preliminaries

We assume that the reader is familiar with the concepts
of RDF and SPARQL, including the notions of an RDF
triple, a triple pattern, a basic graph pattern (BGP), and
a solution mapping. To denote the set of solution map-
pings that is defined as the result of a SPARQL query Q
over an RDF graph G we write [[Q]]G. As the basis of
our query federation scenario, we assume that the fed-
eration consists of SPARQL endpoints. Formally, we

4URI authority: https://tools.ietf.org/html/
rfc3986#section-3.2
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capture this federation as a finite set D whose elements
denote SPARQL endpoints, which we simply refer to
as data sources. For each such data source D ∈ D, we
writeG(D) to denote the underlying RDF graph exposed
by D. Hence, when requesting data source D to execute
a SPARQL query Q, we expect that the result returned
by D is the set [[Q]]G(D). Then, we define the result of
a SPARQL query Q over the federation D to be a set
of solution mappings that is equivalent to [[Q]]GD where
GD=

⋃
D∈D G(D).

4. Data Summaries

The basis of the CostFed approach is an index that
stores a dedicated data summary for each of the data
sources in the federation. The innovation of these data
summaries is twofold: First, they take into account the
skew distribution of subjects and objects per predicate in
each data source. Second, they contain prefixes of URIs
that have been constructed such that our source selection
approach (cf. Section 5) can use them to prune irrelevant
data sources more effectively than the state-of-the-art
approaches. This section describes these two aspects of
the CostFed data summaries (beginning with the second)
and, thereafter, defines the statistics captured by these
summaries.

As mentioned in Section 2, HiBISCuS fails to prune
the data sources that share the same URI authority.
CostFed overcomes this problem by using source-
specific sets of strings that many URIs in a data source
begin with (hence, these strings are prefixes of the URI
strings). These common URI prefixes are determined
as follows: Let ρ be a set of URIs for which we want
to find the most common prefixes; in particular, such
a set ρ shall be all subject or all object URIs with a
given predicate in a data source. We begin by adding
all the URIs in ρ to a temporary trie data structure (also
called prefix tree). While we use a character-by-char-
acter insertion in our implementation, we present a
word-by-word insertion for the sake of clarity and
space in the paper. For instance, inserting the URIs
wiwiss.fu-berlin.de/drugbank/resource/drugs/DB00201
and wiwiss.fu-berlin.de/drugbank/resource/ refer-
ences/1002129 from DrugBank leads to the trie shown
Figure 1. We say that a node in the trie is a common-
prefix end node if (1) it is not the root node and (2) the
branching factor of the node is higher than a pre-set
threshold. For example, by using a threshold of 1, the
node resource would be a common-prefix end node
in Figure 1. After populating the trie from ρ and marking
all common-prefix end nodes, we can now compute
the set of all common URI prefixes for ρ by simply

traversing the trie and concatenating each path from the
root to one of the marked nodes. In our example, given
the branching factor threshold of 1, the only common
prefix is wiwiss.fu-berlin.de/drugbank/resource/. In the
end we delete the temporary trie.

To take into account the skew distribution of subjects
and objects per predicate in a data source, CostFed re-
trieves the frequencies of all the subject/object resources
that appear with each of the predicates and orders them
in ascending order w.r.t. these frequencies. We then
compute the differences in the frequencies between each
pair of consecutive resources (e.g., subtract the second
ranked frequency from the first, and third from the sec-
ond, and so on) in the ordered list of subjects/objects.
An example skew distribution of the subject frequencies
of the DBpedia2015-10 property foaf:name is given
in Figure 2. We use this distribution to map resources
to one of three mutually disjoint buckets—b0, b1, and
b2—which we summarize with a decreasing amount of
detail. Informally, we construct the buckets such that
b0 contains the high-frequency resources (that appear
most often with the predicate in question), b1 contains
the middle-frequency resources, and b2 is for the long
tail of low-frequency resources. The choice of three
buckets was chosen according to the level of details we
are storing. In b0 we store resources along with their
frequencies. In b1 we store resources along a single avg.
frequency of all the resources in the bucket. In b2, we
only store avg. frequency. In this way we care the skew
distribution of the resources while keeping the resulting
index smaller for fast lookup.

The cutting point xk+1 for bucket bk is formally de-
fined as follows. Let fn be the frequency for a re-
source rn where n = {1, ..., N}, the sequence of the
frequencies is expressed as an = {f1, ..., fN} such that
fn ≥ fn+1 ∀n < N . We find the cutting points as:

xk+1 = min

(
argmax

n∈{xk+1,N−1}
δn

)
(1)

where δn = an − an+1 is the sequence of the drops
and the first cutting point x0 is zero by definition. In
other words, we iteratively look for the first largest drop.
The xk+1th frequency is included in bucket bk. In our
implementation, we force x1 ≥ 10, which means the
first 10 resources are always assigned to b0 (e.g., see
Figure 2). The maximal number of resources in b0 and
b1 is limited to 100 to keep our index small enough
for fast index lookup during source selection and query
planning.5

5We performed various experiments and these values turned out to
be the most suitable.
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Figure 2: Construction of buckets in skew distribution: Resources in
brown go into b0, black into b1, and blue into b2.

We now define the summarization of the buckets: In-
formally, for each of the resources in bucket b0, we index
it individually together with its corresponding frequency.
The resources in b1 are indexed individually along with
their average frequency across all resources in b1, and for
the long-tail resources in b2 we only record the average
selectivity w.r.t. the predicate (i.e., without storing the
individual resources). Formally, we capture these sum-
maries by the following notion of capabilities. Given
a data source D ∈ D, let p be a predicate used in the
data of D (i.e., p ∈ {p′ | (s′, p′, o′) ∈ G(D)}). Moreover,
let sbjs(p,D), respectively objs(p,D), be the set of sub-
jects, respectively objects, in all triples in D that have p
as predicate, and let the sets sb0, sb1, sb2 ⊆ sbjs(p,D)
and ob0, ob1, ob2 ⊆ objs(p,D) represent the correspond-
ing three subject buckets and object buckets, respec-
tively (hence, sb0–sb2 are pairwise disjoint, and so are
ob0–ob2). We define the p-specific capability of D as a
tuple that consists of the following elements:

• b0Sbjs is a map that associates each subject re-
source s ∈ sb0 with a corresponding cardinality
b0Sbjs(s) =

∣∣{(s′, p′, o′) ∈ G(D) | s′= s and p′=
p}
∣∣.

• b0Objs is a map that associates each object re-
source o ∈ ob0 with a corresponding cardinal-
ity b0Objs(o) =

∣∣{(s′, p′, o′) ∈ G(D) | o′ =

o and p′= p}
∣∣.

• b1Sbjs is a pair (sb1, c) with c being the average
cardinality in the corresponding bucket b1, i.e., c =

1
|sb1|

∑
s∈sb1

∣∣{(s′, p′, o′) ∈ G(D) | s′= s and p′=
p}
∣∣.

• b1Objs is a pair (ob1, c) with c being the average
cardinality in the corresponding bucket b1, i.e., c =

1
|ob1|

∑
o∈ob1

∣∣{(s′, p′, o′) ∈ G(D) | o′= o and p′=
p}
∣∣.

• sbjPrefix (p,D) is a set of common URI prefixes
computed for the set sbjs(p,D) of URIs (by using
the trie data structure as described above).

• objPrefix (p,D) is a set of common URI prefixes
computed for objs(p,D).6

• avgSS (p,D) is the average subject selectivity of p
in D considering only the corresponding bucket b2;
i.e., avgSS (p,D) = 1/|sb2|.

• avgOS (p,D) is the average object selectivity of p
in D considering only the corresponding bucket b2;
i.e., avgOS (p,D) = 1/|ob2|.

• T (p,D) is the total number of triples with predicate
p in D.

Note that the total number of capabilities that CostFed
indexes for a source D is equal to the number of dis-
tinct predicates in D. However, the predicate rdf:type
is treated in a special way. That is, the rdf:type-specific
capability of any source D ∈ D does not store the set
objPrefix (rdf:type, D) of common object prefixes, but in-
stead it stores the set of all distinct class URIs in D,
i.e., the set {o | (s, rdf:type, o) ∈ G(D)}. The rationale
of this choice is that the set of distinct classes used in
a source D is usually a small fraction of the set of all
resources in D. Moreover, triple patterns with predicate
rdf:type are commonly used in SPARQL queries. Thus,
by storing the complete class URIs instead of the respec-
tive prefixes, we can potentially perform a more accurate
source selection.

For each data source D ∈ D, CostFed also stores the
overall number of distinct subjects tS(D), the overall
number of distinct objects tO(D), and the overall size
tT (D) of G(D). An excerpt of a data summary is given
in the supplementary material.7

6We do not consider literal object values for objPrefix(p,D) be-
cause, in general, literals do not share longer common prefixes and we
want to keep the index small.

7CostFed supplementary material: https://goo.gl/otj9kq
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Most of the statistics in our data summaries can be
obtained by simply sending SPARQL queries to the un-
derlying SPARQL endpoints. Only to compute the URI
prefixes we need to retrieve all subject and object URIs
(not literal values). However, this is one time process.
Any later updates in the data sources do not require the
complete index update. Rather, we only need to update
the specific set of capabilities where changes are made.
CostFed can perform an index update on a specified
point of time as well as on a regular interval. The index
generation time is evaluated in Section 7.2.

5. Source Selection

5.1. Foundations

As a foundation of our source selection approach
we represent any basic graph pattern (BGP) of a given
SPARQL query as some form of a directed hypergraph.
In general, every edge in a directed hypergraph is a pair
of sets of vertexes (rather than a pair of two single ver-
texes as in an ordinary digraph). In our specific case, ev-
ery hyperedge captures a triple pattern; to this end, the set
of source vertexes of such an edge is a singleton set (con-
taining a vertex for the subject of the triple pattern) and
the target vertexes are given as a two-vertex sequence (for
the predicate and the object of the triple pattern). For
instance, consider the query in Figure 3a whose hyper-
graph is illustrated in Figure 4a (ignore the edge labels
for the moment). Note that, in contrast to the commonly
used join graph representation of BGPs in which each
triple pattern is an ordinary directed edge from a subject
node to an object node [15, 16], our hypergraph-based
representation contains nodes for all three components
of the triple patterns. As a result, we can capture joins
that involve predicates of triple patterns. Formally, our
hypergraph representation is defined as follows.

Definition 5.1 (Hypergraph of a BGP). The hyper-
graph representation of a BGP B is a directed
hypergraph HG = (V,E) whose vertexes are all
the components of all triple patterns in B, i.e.,
V =

⋃
(s,p,o)∈B{s, p, o}, and that contains a hyperedge

(S, T ) ∈ E for every triple pattern (s, p, o) ∈ B such
that S = {s} and T = (p, o).

Note that, given a hyperedge e = (S, T ) as per Defini-
tion 5.1, since T is a (two-vertex) sequence (instead of a
set), we may reconstruct the triple pattern (s, p, o) ∈ B
from which the edge was constructed. Hereafter, we
denote this triple pattern by tp(e). Then, given the
hypergraph HG = (V,E) of a BGP B, we have that
B = {tp(e) | e ∈ E}. For every vertex v ∈ V in such

a hypergraph we write Ein(v) and Eout(v) to denote the
set of incoming and outgoing edges, respectively; i.e.,
Ein(v) = {(S, T )∈E | v∈T} and Eout(v) = {(S, T )∈
E | v ∈ S}. If |Ein(v)| + |Eout(v)| > 1, we call v a
join vertex.

During its hypergraph-based source selection pro-
cess, CostFed manages a mapping λ that labels each
hyperedge e with a set λ(e) ⊆ D of data sources (i.e.,
SPARQL endpoints). These are the sources selected to
evaluate the triple pattern tp(e) of the hyperedge. In the
initial stage of the process, such a label shall consist of all
the sources that contain at least one triple that matches
the triple pattern. We call each of these sources rele-
vant (or capable) for the triple pattern. More specifically,
a data source D ∈ D is relevant for a triple pattern tp
if the result of evaluating tp at D is nonempty; that is,
[[tp]]G(D) 6= ∅. Hereafter, let R(tp) ⊆ D denote the set
of all relevant sources for tp.

Note that this notion of relevance focuses on each
triple pattern independently. As a consequence, there
may be a source (or multiple) that, even if relevant for a
triple pattern of a query, the result for that triple pattern
from this source cannot be joined with the results for the
rest of the query and, thus, does not contribute to the
overall result of the whole query. Therefore, we intro-
duce another, more restrictive notion of relevance that
covers only the sources whose results contribute to the
overall query result. That is, a data source D ∈ D is said
to contribute to a SPARQL queryQ if there exists a triple
pattern tp in Q and a solution mapping µ in the result of
Q over the federation D such that µ(tp) is a triple that is
contained in G(D). Hereafter, for every triple pattern tp
of a SPARQL query Q, we write CQ(tp) to denote the
set of all data sources (in D) that are relevant for tp and
contribute to Q; hence, CQ(tp) ⊆ R(tp). Then, the
problem statement underlying the source selection of
CostFed is given as follows:

Definition 5.2 (CostFed Source Selection Problem).
Let Q be a SPARQL query that consists of n BGPs.
Given a set DHG = {(V1, E1), . . . , (Vn, En)} of
hypergraphs that represent these BGPs, determine an
edge labeling λ : (E1 ∪ · · · ∪ En) → 2D such that
for each hyperedge e ∈ (E1 ∪ · · · ∪ En) it holds that
λ(e) = CQ(tp(e)).

5.2. Source Selection Algorithm

CostFed’s source selection comprises two steps:
Given a query Q, we first determine an initial edge la-
beling for the hypergraphs of all the BGPs of Q; i.e.,
we compute an initial λ(e) for every e ∈ Ei in each

5



SELECT ? drug ? t i t l e WHERE {
? drug db : d r u g C a t e g o r y dbc : m i c r o n u t r i e n t .

# R(tp1)={DrugBank}
? drug db : c a s Reg i s t r y Nu mbe r ? i d .

# R(tp2)={DrugBANK}
? keggDrug r d f : t y p e kegg : Drug .

# R(tp3)={KEGG}
? keggDrug b i o 2 r d f : xRef ? i d .

# R(tp4)={ChEBI , KEGG}
? keggDrug p u r l : t i t l e ? t i t l e .

# R(tp5)={ChEBI , Jamendo , KEGG, SWDF}}

(a) Triple pattern-wise relevant sources

⋈

⋈

⋈

⋈
𝜋 ?drug, ?title

tp1
R(tp1) = {DrugBank}
C(tp1): 48

tp2
R(tp2) = {DrugBank}
C(tp2): 2240

(47)

tp3
R(tp3) = {KEGG}
C(tp3): 8117

tp4
R(tp4) = {ChEBI, KEGG}
C(tp4): 102343

tp5
R(tp5) = {ChEBI, Jamendo, KEGG, SWDF}

C(tp5): 121158

(373383)

(28)

(28)

𝛴excl
@DrugBank

(47)

tp1
C(tp1): 48

tp2
C(tp2): 2240

𝛴excl
@KEGG

(32517)

tp3
C(tp3): 8117

tp5
C(tp5): 34146

tp4
C(tp4): 73196

⋈
?drug, ?title

(28)
b

𝜋

(b) Unoptimized left-deep plan

Figure 3: Motivating Example: FedBench LS6 query. C(tp) represents
the cardinality of triple pattern tp.

(Vi, Ei) ∈ DHG. In a second step, we prune the la-
bels of the hyperedges assigned in the first step. The
first step8 works as follows: For hyperedges of triple
patterns with unbound subject, predicate, and object (i.e.,
tp =<?s, ?p, ?o >) we select all sources in D as rel-
evant. For triple patterns with predicate rdf:type
and bound object, an index lookup is performed and
all sources with matching capabilities are selected. For
triple patterns with either bound subject or bound object
or common predicate (i.e., appears in more than 1/3 of
D), we perform an ASK operation; that is, an ASK query
with the given triple pattern is sent to each of the sources
in D, respectively, and the sources that return true are
selected as relevant sources for the triple pattern. The
results of the ASK operations are stored in a cache for
future lookup. Figure 4a shows the resulting hyperedge
labeling of the example query.

5.2.1. Pruning approach
After labeling the edges of the hypergraphs, we prune

irrelevant sources from the labels by using the source-
pruning algorithm shown in Algorithm 1. The intuition

8Due to space limitation, the pseudo code of this algorithm can
be found (along with a description) in the supplementary material at
https://goo.gl/otj9kq.

:title

:xRef

:type
Kegg
drug

join nodeTail of Hyperedge

title

:Drug

id

drug

:m
ic

.
:c

at
.

:regNo

R(tp2) = {DrugBank}

R(tp1) = {DrugBank}
R(tp3) = {KEGG}

(a) DLH of Figure 3a query and source selection

⋈

⋈

⋈

⋈
𝜋 ?drug, ?title

tp1
R(tp1) = {DrugBank}
C(tp1): 48

tp2
R(tp2) = {DrugBank}
C(tp2): 2240

(47)

tp3
R(tp3) = {KEGG}
C(tp3): 8117

tp4
R(tp4) = {ChEBI, KEGG}
C(tp4): 102343

tp5
R(tp5) = {ChEBI, Jamendo, KEGG, SWDF}

C(tp5): 121158

(373383)

(28)

(28)

𝛴excl
@DrugBank

(47)

tp1
C(tp1): 48

tp2
C(tp2): 2240

𝛴excl
@KEGG

(32517)

tp3
C(tp3): 8117

tp5
C(tp5): 34146

tp4
C(tp4): 73196

⋈
?drug, ?title

(28)
b

𝜋

(b) Query plan

Figure 4: CostFed source selection and the corresponding query plan
for the query given in Figure 3a. Bold red are the sources finally
selected after the pruning Algorithm 1.

behind our pruning approach is that knowing which
stored prefixes are relevant to answer a query can be used
to discard triple pattern-wise (TPW) selected sources
that will not contribute to the final result set of the query.
Our algorithm takes the set of all labeled hypergraphs as
input and prunes labels of all hyperedges that are either
incoming or outgoing edges of a join node. Note that our
approach deals with each hypergraph (Vi, Ei) ∈ DHG
of the query separately (Line 1 of Algorithm 1). For
each node v ∈ Vi that is a join node, we first retrieve
the sets (1) SPrefix of the subject prefixes contained
in the elements of the label of each outgoing edge of
v (Lines 2–7 of Algorithm 1) and (2) OPrefix of the
object prefixes contained in the elements of the label of
each ingoing edge of v (Lines 8–10 of Algorithm 1)9.

Now we merge these two sets to the set P (set of
sets) of all prefixes (Line 11 of Algorithm 1). Next, we
plot all of the prefixes of P into a trie data structure.
For each prefix p in P we then check whether p ends
at a child node of the trie. If a prefix does not end at a
child node, then we get all of the paths from the prefix
last node (say n) to each leaf of n. These new paths
(i.e., prefixes) resulted from p are then replaced in the
prefix (Lines 12–22 of Algorithm 1). The intersection
I =

(⋂
pi∈P pi

)
of these element sets is then computed.

Finally, we recompute the label of each hyperedge e that

9We encourage readers to refer to https://goo.gl/JJby23
during the subsequent steps of the pruning algorithm. The file contains
a running example of the pruning algorithm.
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Algorithm 1: CostFed’s source pruning algorithm
input : DHG ; /* set of hypergraphs that represent

the BGPs of a query */
output : DHG ; /* set of hypergraphs that represent

the BGPs of a query with prunned sources */
1 foreach hypergraph (Vi, Ei) ∈ DHG do
2 foreach hypergraph vertex v ∈ Vi do
3 if v is a join vertex then
4 SPrefix = ∅;OPrefix = ∅ ;
5 foreach hyperedge e ∈Eout(v) do
6 SPrefix = SPrefix ∪ {subjectPrefixes(e)}

; /* subjectPrefixes(e) is a
function to get all subject
prefixes from index for the
triple pattern represented by the
hyperedge e. */

7 end
8 foreach hyperedge e ∈Ein(v) do
9 OPrefix = OPrefix ∪ {objectPrefixes(e)}

10 end
11 P = SPrefix concatOPrefix ; /* merged

set */
12 Tr = getTrie(P ) ; /* get Trie of all

prefixes, no branching limit */
13 foreach prefix p ∈ P do
14 if !isLeafPrefix(p,Tr) then /* prefix does

not end at a leaf of Trie */
15 C = getAllChildPaths(p) ; /* get all

paths from prefix last node n
to each leaf of n */

16 A = ∅ ; /* to store all possible
prefixes of a given prefix */

17 foreach path c ∈ C do
18 A = A ∪ p.concatenate(c) ;
19 end
20 P .replace(p,A) ; /* replace p with

its all possible prefixes */
21 end
22 end
23 I = P .get(1) ; /* get first element of

prefixes */
24 foreach prefix p ∈ P do
25 I = I ∩ p ; /* intersection of all

elements of P */
26 end
27 foreach hyperedge e ∈Ein(v) ∪ Eout(v) do
28 label = ∅ ; /* variable for final

label of e */
29 foreach data source di ∈ λ(e) do
30 if prefixes(di) ∩ I 6= ∅ then
31 label = label ∪ di ;
32 end
33 end
34 λ(e) = label
35 end
36 end
37 end
38 end

is connected to v. To this end, we compute the subset
of the previous label of e which is such that the set of
prefixes of each of its elements is not disjoint with I (see
Lines 24 onwards of Algorithm 1). These are the only
sources that will potentially contribute to the final result
set of the query. The sources that are finally selected
after the pruning are shown in bold red in Figure 4a. We
are sure not to lose any recall by this operation because
joins act in a conjunctive manner. Consequently, for
a data source Di in the initial label of a hyperedge, if
the results of Di cannot be joined with the results of at
least one source of each of the other hyperedges, it is
guaranteed that Di will not contribute to the final result

set of the query.

6. Query Planning

6.1. Triple Pattern Cardinality Estimation
Let tp =< s, p, o > be a triple pattern having predi-

cate p and R(tp) be the set of relevant sources for that
triple pattern. By using the notations used in Section 4,
the cardinality C(tp) of tp for b2 is calculated as follows
(the predicate b stands for bound):



∑
∀Di∈R(tp)

T (p,Di)× 1 if b(p) ∧ !b(s) ∧ !b(o),∑
∀Di∈R(tp)

T (p,Di)× avgSS(p,Di) if b(p) ∧ b(s) ∧ !b(o),∑
∀Di∈R(tp)

T (p,Di)× avgOS(p,Di) if b(p) ∧ !b(s) ∧ b(o),∑
∀Di∈R(tp)

tT (Di)× 1 if !b(p) ∧ !b(s) ∧ !b(o),∑
∀Di∈R(tp)

tT (Di)× 1
tS(Di)

if !b(p) ∧ b(s) ∧ !b(o),∑
∀Di∈R(tp)

tT (Di)× 1
tO(Di)

if !b(p) ∧ !b(s) ∧ b(o),∑
∀Di∈R(tp)

tT (Di)× 1
tS(Di)×tO(Di)

if !b(p) ∧ b(s) ∧ b(o),

1 if b(p) ∧ b(s) ∧ b(o)

We perform an index lookup if the triple pattern con-
tains a bound subject or object belonging to buckets b0
or b1. The frequencies (i.e., individual for b0 and av-
eraged across b1) are already stored in the index. For
other cases, the cardinality estimation remains the same
as explained above. By using the equation, we can esti-
mate the cardinality of the first two triple patterns of the
query given in Figure 3a as follows: Since DrugBank is
the only relevant source for triple patterns tp1 and tp2,
we have that C(tp1) = T (db:drugCategory, DrugBank)×
avgOS(db:drugCategory, DrugBank)
= 4602 × 0.0017123287671232876
≈ 8, and
C(tp2) = T(db:casRegistryNumber, DrugBank)
≈ 2240 .
The actual cardinalities are 47 and 2240 for tp1 and tp2,
respectively.

6.2. Join Cardinality Estimation
Our query planning relies on the subsequent recur-

sive definition of a BGP B [2]: (1) A triple pattern is
a BGP; (2) If B1 and B2 are BGPs, then B1 JOIN B2
represented as B1 ./ B2 is a BGP.

The join cardinality of two BGPs B1 resp. B2 w.r.t.
the datasets Di resp. Dj is estimated as follows:

C(B1 ./ B2) =M(B1)×M(B2)×Min(C(B1), C(B2))
(2)
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: s1 : p1 : o1 , : o2 , : o3 .
: s1 : p2 : o4 , : o5 .
: s2 : p1 : o6 .

SELECT SELECT ? o1 ? o2 WHERE
{ ? s : p1 ? o1 . / / t p 1

? s : p2 ? o2 . / / t p 2 }

Figure 5: Effect of multivalued predicates: Sample RDF with multi-
valued predicates p1, p2 and SPARQL query. Prefixes are ignored for
simplicity

where M(B) is the average frequency of multivalued
predicate (a predicate which can have multiple values,
e.g., a person x can have more than one contact numbers)
in BGPB (noteB is the triple pattern in this case and not
the result of previously computed joins between triple
patterns) and is calculated as follows:

M(B) =
1√
2

if B = tp ∧ b(p) ∧ !b(s) ∧ b(o),
C(B)

distSbjs(p,D)
if B = tp ∧ b(p) ∧ !b(s) ∧ !b(o) ∧ j(s),

C(B)
distObjs(p,D)

if B = tp ∧ b(p) ∧ !b(s) ∧ !b(o) ∧ j(o),

1 other cases

where j(s) means that the subject of the triple pattern is
involved in the join and tp =< s, p, o > is a triple pat-
tern. Note that the multivalued predicates can have dra-
matic effect on the cardinalities of joins between triple
patterns. Consider, the sample dataset and SPARQL
query given in Figure 5, the cardinality of the first triple
pattern tp1 is 4 and cardinality of the second triple pattern
tp2 is 2. A query planner which ignores the multivalued
predicates (e.g. SemaGrow) will simply selects the min-
imum of the cardinalities of the two triple patterns (i.e.
2) as cardinality of the joins (on variable ?s) between the
given triple patterns in the query. However, the actual
cardinality of the join is 6. In CostFed, M(tp1) = 2
(i.e. 4/2), M(tp1) = 2 (2/1) and Min(C(tp1), C(tp2))
= 2. Thus CostFed’s estimated cardinality according to
Equation 2 is 2*2*2 = 8.

6.3. Join Cost Estimation

We make use of both bind join (./b) [2, 14, 5] and
symmetric hash join (./h) [1] in our query planning, and
decide (explained in the next section) between the two
based on a cost estimation given as (\ stands for the
integer division):

Cost(B1 ./h B2) =
(1 + TC)

TC
∗ CSQ+ C2h + C3h

(3)

C2h = C(B2) ∗ CRT (4)
C3h = (C(B1) + C(B2)) ∗ CHT (5)

where C2h is the cost of receiving the larger tuple set,
C3h is the cost of intersecting received sets

Cost(B1 ./b B2) = CSQ+ C2b + C3b (6)
C2b = C(B1) ∗ CRT (7)

C3b = CSQ ∗
(C(B1)+BSZ−1

BSZ ) + CTC − 1

CTC
(8)

where C2b is the cost of receiving B1 set, C3b is the
cost of sending bound B2 requests. CSQ is the cost of
sending a SPARQL query,CRT is the cost of receiving a
single result tuple, CHT is the cost of handling a single
result tuple, BSZ is the binding block size, TC is the
number of threads used to query SPARQL endpoints.
We chose CSQ=100, CRT=0.01, CHT=0.0025, TC=20,
BSZ=20 after an empirical study based on LSQ [8] and
looking at the values used in SemaGrow [2]. For the
query given in Figure 3a, the Cost(T1 ./h T2) = 100+
8×0.01+(8+2240)×0.0025 = 105.7 andCost(T1 ./b
T2) = 100 + 8× 0.01 + 1× 100 = 200.08

6.4. Exclusive Groups

Many of the existing SPARQL federation engines [14,
5, 1] make use of the notion of exclusive groups: a set
of triple patterns whose single relevant source is D. The
advantage of exclusive groups of size greater than 1 is
that they can be combined to a conjunctive query and
sent toD in a single sub-query, thus minimizing the local
computation [14]. As an example, consider CostFed’s
source selection given in Figure 4a. The first two triple
patterns (i.e., tp1, tp2) form an exclusive group, since
DrugBank is the single relevant source for these triple
patterns. Similarly, the last three triple patterns (i.e., tp3,
tp4, tp5) form another exclusive group for KEGG data
source.

6.5. Join Ordering

CostFed’s join ordering approach is shown in Algo-
rithm 2. It takes a set of join arguments (i.e., triple
patterns or groups of triple patterns) as input. We first
estimate the cardinality of each argument in the input
set. We then store it together with the argument in a pair.
For example (tp1, C(tp1)) is a pair which consists of
triple pattern tp and its estimated cardinality. We store
all these pairs in the argPairs collection (Lines 1-4) and
sort the collection by cardinality values in ascending or-
der (Line 5). Thus, the first element of this collection is
the join pair with minimal cardinality. It will be the left
argument of the first binary join operator of the resulting
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Algorithm 2: Join Order Optimization
input :a list joinargs of join arguments
output :a root of join tree nodes

1 argPairs← ∅;
2 foreach arg in the joinargs do
3 argPairs← argPairs ∪ Pair(arg,

FindCardinality(arg));
4 end
5 argPairs← SortByCardinalityAsc(argPairs);
6 leftJoinArgumentPair← PopFront(argPairs) ; /* get the

smallest card pair */
7 rightJoinArgumentPair← ∅ ; /* needs to find the right

join arg */
8 joinVars← FreeVars(First(leftJoinArgumentPair)) ;

/* first tuple vars */
9 while argPairs 6= ∅ do

10 foreach pair in the argPairs do
11 if GetCommonVars(joinVars, First(pair)) 6= ∅ then
12 rightJoinArgumentPair← pair;
13 argPairs← argPairs– pair ; /* remove pair

from argPairs */
14 break;
15 end
16 end
17 if rightJoinArgumentPair = ∅ then
18 rightJoinArgumentPair← PopFront(argPairs);
19 end
20 joinVars← joinVars ∪

FreeVars(First(rightJoinArgumentPair));
21 if HashJoinCost(leftJoinArgumentPair,

rightJoinArgumentPair)<
BindJoinCost(leftJoinArgumentPair,
rightJoinArgumentPair) then

22 leftJoinArgumentPair←
CreateHashJoin(leftJoinArgumentPair,
rightJoinArgumentPair);

23 else
24 leftJoinArgumentPair←

CreateBindJoin(leftJoinArgumentPair,
rightJoinArgumentPair);

25 end
26 end
27 result← leftJoinArgumentPair;

output join tree (Line 6). We then try to find the right
argument of the first binary join operator. It should be an
argument having at least one common variable with the
left argument and minimal possible cardinality. For this,
we traverse the remaining pairs in argPairs collection
(Lines 10-16). If there is no argument having common
variables we just get the next argument with minimal car-
dinality (Lines 17-19). We next decide between bind and
symmetric hash joins selecting the join implementation
that leads to the smaller cost (Line 21). Subsequently,
we create an appropriate join node and set it as the left
argument for the next binary join (Lines 22-25). We
repeat the procedure for finding the right argument for
the next binary join (Lines 9-26) and get a left-deep join
tree as final output.

The final CostFed query plan for the motivating ex-
ample query is shown in Figure 4b. In this query plan
we have two exclusive groups. Thus, these joins are
executed remotely. The results of the exclusive groups
are then joined locally using a bind join. Note the query
plan for the same query is also provided by FedX [14]

and SemaGrow [2] in the corresponding papers. Both of
these systems overestimate the set of relevant sources,
i.e., select a total of nine sources (one each for first three
triple patterns, two for fourth triple pattern, four for fifth
triple pattern, ref., Section 7.2). In contrast, CostFed se-
lects the optimal five sources, one for each triple pattern
and then only performs a single local join (both FedX
and SemaGrow perform more than one local join for the
same query). The resulting query runtime improvement
is shown in Table 1.

CostFed is implemented in Java and relies on the
Sesame framework. Thus, it fully supports all the
SPARQL features supported by Sesame API. We used
multi-threaded worker pool to execute both the joins
and union operators in a highly parallelized fashion. In
addition, to achieve a higher throughput, we used the
pipelining approach such that intermediate results can be
forwarded to the next operator as soon as they are ready.

7. Evaluation

7.1. Experimental Setup

We used FedBench [13] for our evaluation which com-
prises 25 queries, 14 of which (CD1-CD7, LS1-LS7) are
for SPARQL endpoint federation approaches (the other
11 queries (LD1-LD11) are for Linked Data federation
approaches [10]). Hence, we used all 14 SPARQL end-
point federation queries in our evaluation. In addition,
we used the Complex queries (C1-C10) from LargeRDF-
Bench to test CostFed’s performance on more complex
queries. These complex queries have more triple patterns
(at least 8 vs. a maximum of 7 in FedBench), more join
vertices (3-6 vs. 1-5 in FedBench) and a higher mean
join vertex degree (2-6 vs. 2-3 in FedBench). In addi-
tion, they were designed to use more SPARQL clauses
(especially, DISTINCT, LIMIT, FILTER and ORDER
BY) that are missing in the FedBench queries. Further
details about the complex queries can be found at the
aforementioned LargeRDFBench project website.

Each of FedBench’s nine datasets was loaded into
a separate physical Virtuoso 7.2 server, each of which
equipped with a 3.2GHz i7 processor, 32 GB RAM and
a 500 GB hard disk. The client machine that ran the
experiments had the same specification. We conducted
the experiments in a local network. Hence, the network
costs were negligible. Each query was executed 15 times
and the results were averaged. We best choose 4 as trie
branching factor for the index construction. The query
timeout was 20 min. We compared the selected engines
based on: (1) the total number of triple pattern-wise
sources selected, (2) the total number of SPARQL ASK
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requests submitted during the source selection, (3) the
average source selection time, (4) the average query ex-
ecution time, (5) the index/data summary generation
time (if applicable), and (6) index compression ratio.

7.2. Experimental Results

We first measured the compression ratio10 achieved
by each system. CostFed achieves an index size of
9.5 MB for the complete FedBench data dump (19.7
GB), leading to a high compression ratio of 99.99%.
The other approaches achieve similar compression ratios.
CostFed’s index construction time is around 60 min for
all of FedBench. ANAPSID requires only 5 min while
SPLENDID and SemaGrow need 110 min. HiBISCuS’s
indexing runtime lies around 41 min.

More importantly, we analysed the results of the
source selection and overall query runtime. We define
efficient source selection in terms of: (1) the total num-
ber of triple pattern-wise sources selected (#T), (2) the
total number of ASK requests (#A) used to obtain (1),
and (3) the source selection time (ST). Table 1 shows the
results of these three metrics for the selected approaches.
Overall, CostFed is the most efficient source selection
approach w.r.t. all metrics. It selects the smallest #T,
i.e., 70 for FedBench and 104 for Complex queries (see
the average/total values in Table 1). Similarly, it re-
quires the smallest number of ASK queries during the
source selection along with the smallest source selec-
tion time. CostFed outperforms HiBISCuS w.r.t. source
selection time as CostFed’s index is loaded as hash ta-
bles and addressed using sorted tables (HiBISCuS relies
on a Sesame model and SPARQL queries for lookup).
It is important to mention that FedX, HiBISCUS, and
CostFed cache the results of ASK requests used during
the source selection. Thus, they always perform a cache
lookup before sending an ASK request to the underly-
ing SPARQL endpoint. The runtime results in Table 1
are the results for the warm cache of these federation
engines. We can clearly see that the join-aware source
selection approaches, i.e., CostFed, ANAPSID, and Hi-
BISCUS select around half (e.g., 70 for CostFed vs. 134
for FedX on FedBench) of the total #T selected by the
non-join-aware source selection federation engines. As
mentioned before, such an overestimation of sources can
be very costly (extra network traffic, irrelevant interme-
diate results). The effect of such overestimation is even
more critical while dealing with large data queries.

The query execution time is often used as key metric
to compare federation engines. Herein, we consider the

10Compression ratio = (1 - index size/total data dump size).

query execution time to be the time necessary to gather
all the results from the result set iterator of each engine.
Moreover, we considered each time-out to be equal to
a runtime of 20min while computing the average run-
times (RT) presented in the row T/A of Table 1. Since
HiBISCUS is only a source selection approach, it can-
not provide query runtimes. Overall, CostFed clearly
outperforms the other selected systems. On FedBench,
CostFed is better than FedX on 11/14 queries and out-
performs SPLENDID, ANAPSID and SemaGrow on all
14 queries. CostFed’s average runtime across all 14 Fed-
Bench queries is only 440ms while FedX needs 7,468ms
(i.e., 16 times the runtime of CostFed), SPLENDID’s is
5,3404ms (i.e., 121× slower than CostFed), ANAPSID’s
is 12,467ms (i.e., 28× that of CostFed), and SemaGrow’s
is 1,203ms (i.e., 3× slower than CostFed). Since the
execution times for the FedBench queries are very small,
i.e., less than 3 seconds on CostFed, the average run-
time performance for a system is greatly affected if a
particular query takes too long. For example, FedX takes
94,519ms to execute LS6, due to which overall runtime
performance is greatly decreased comparing to CostFed.
If we remove the LS6 runtime, then FedX’s average
(across the remaining 13 queries) runtime is 771 ms (2×
CostFed’s).

To address the drawbacks of the short runtimes of
FedBench queries, we used more complex queries from
LargeRDFBench which have longer (up to 20 min) query
runtimes. On complex queries from LargeRDFBench,
CostFed is better than FedX on 8/9 comparable queries
(C5 time outs for both systems), better than SPLENDID
on 7/8 comparable queries (C4 and C9 result in runtime
errors for SPLENDID), better than ANAPSID on 8/9
queries (C5 results in a runtime error for ANAPSID)
queries, and better than SemaGrow on 9/9 queries (C5
times out for both systems). On these queries, CostFed’s
average (over all 10 queries) query runtime is 122,574ms
while FedX’s average is 246,296ms (i.e., 2× of CostFed).
SPLENDID necessitates 1.73× CostFed’s runtime while
ANAPSID has an average runtime of 147,265ms (i.e.,
1.2× CostFed’s) while SemaGrow achieved 367,496ms
(i.e., 3× of CostFed).

Overall, our results show clearly that CostFed
outperforms the state of the art on both benchmark
datasets. On the queries where FedX is faster than
CostFed (3/14 FedBench queries), the maximum
runtime difference is only of 6ms, which suggest that
our approach performs well across the diverse types of
queries in our experiments.

How good is the query planning of CostFed?
The measurements in Table 1 show that regarding
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Table 1: Comparison of the federation engines in terms of total triple pattern-wise sources selected #T, total number of SPARQL ASK requests
#A, source selection time ST in msec, and average query runtime RT. (ST*,RT* = FedX source selection time and query runtime with cold cache,
respectively, TO = Time Out of 20 min, RE = Runtime Error, T/A = Total/Average, where Total is for #T, #A, and Average is ST, RT)

FedX SPLENDID ANAPSID SemaGrow CostFed HiBISCuS
Qry #T #A ST* ST RT* RT #T #A ST RT #T #A ST RT #T #A ST RT #T #A ST RT #T #A ST
CD1 11 27 295 5 304 10 11 26 293 430 3 19 261 294 11 26 293 1686 4 18 6 16 4 18 227
CD2 3 27 229 1 231 2 3 9 33 60 3 1 8 26 3 9 33 50 3 9 1 4 3 9 46
CD3 12 45 330 4 358 27 12 2 17 230 5 2 34 74 12 2 17 155 5 0 1 22 5 0 82
CD4 19 45 319 3 351 33 19 2 14 122 5 3 15 46 19 2 14 176 5 0 1 8 5 0 74
CD5 11 36 306 3 329 21 11 1 11 65 4 1 8 35 11 1 11 104 4 0 1 8 4 0 54
CD6 9 36 297 4 777 479 9 2 16 25210 9 10 36 130899 9 2 16 857 8 0 3 196 8 0 35
CD7 13 36 280 5 828 545 13 2 19 5246 6 5 67 351 13 2 19 1004 6 0 1 275 6 0 32
LS1 1 18 149 1 167 18 1 0 2 75 1 0 5 78 1 0 2 80 1 0 1 17 1 0 55
LS2 11 27 241 4 275 33 11 26 200 1440 15 19 69 361 11 26 200 787 4 18 5 17 7 18 356
LS3 12 45 326 3 5141 4818 12 1 11 16868 5 11 46 8755 12 1 11 6544 5 0 1 2698 5 0 262
LS4 7 63 419 4 432 5 7 2 19 200 7 0 12 2444 7 2 19 89 7 0 1 7 7 0 333
LS5 10 54 377 3 1709 1336 10 1 7 90396 7 4 20 4059 10 1 7 1614 7 0 1 701 8 0 105
LS6 9 45 330 3 94848 94519 9 2 8 5586 5 12 58 20312 9 2 8 162 5 0 1 34 7 0 180
LS7 6 45 317 3 2800 2702 6 1 6 601731 5 2 18 6804 6 1 6 3542 6 0 1 2169 6 0 81
T/A 134 549 302 3 7753 7468 134 77 46 53404 80 89 463 12467 134 77 46 1203 70 45 1.7 440 76 45 137
C1 11 104 455 4 4110 3710 11 1 11 61415 8 1 11 2753 11 1 11 TO 8 0 1 1849 9 0 114
C2 11 104 461 3 1665 1205 11 1 7 80212 8 2 30 TO 11 1 7 1347 8 0 1 1057 9 0 16
C3 21 104 458 4 13608 13155 21 3 12 200171 10 33 79 1403 21 3 12 11580 11 0 1 654 11 0 200
C4 28 156 580 5 TO TO 28 0 3 RE 28 32 60 87615 28 0 3 5695 18 0 1 837 18 0 45
C5 33 104 451 4 TO TO 33 0 3 TO 8 3 17 RE 33 0 3 TO 10 0 1 TO 10 0 55
C6 24 117 499 4 24648 24151 24 0 2 40276 9 3 14 3038 24 0 2 47185 9 0 1 2057 9 0 445
C7 17 117 502 3 840 340 17 2 9 11517 9 5 20 1120 17 2 9 6114 9 0 1 116 9 0 175
C8 25 143 540 2 2625 2084 25 2 11 93691 11 2 19 2332 25 2 11 2437 11 0 1 996 11 0 187
C9 16 117 515 317 17987 17668 16 2 17 RE 9 16 52 9085 16 2 17 TO 9 0 1 18040 9 0 170
C10 13 130 535 4 1177 645 13 0 3 14680 11 6 31 18040 13 0 3 611 11 0 1 136 11 0 140
T/A 199 1196 500 4 246666 246296 199 11 7.8 212745 111 103 33.3 147265 199 11 7.8 367496 104 0 1 122574 106 0 154.7

source selection, CostFed is more accurate (in terms of
#T) than the other selected engines. To verify whether or
not this accurate source selection is the only reason for
the smaller query runtimes of CostFed, we also compared
the effectiveness of only the query planning (excluding
source selection) of the selected engines. To this end, we
used SPARQL 1.1 versions11 of all the queries used in
our evaluation. Note that the SPARQL 1.1 versions of
the queries make use of the SPARQL SERVICE clause,
which means the source selection is already performed.
Hence, the resulting measurements, presented in Fig-
ures 6 and 7, indicate the query execution performance
if all the engines use exactly the same selected sources.
Note that SPLENDID is not included in this evaluation
because its current version (as of April 2018) does not
support SPARQL 1.1 queries with SERVICE clauses

On FedBench, CostFed is better than FedX on 12/14
queries and outperforms ANAPSID and SemaGrow on
all 14 queries. CostFed’s average runtime across all
14 FedBench queries is only 435ms while FedX needs
1181ms (i.e., 2.71 times the runtime of CostFed), Sema-
Grow’s is 745ms (i.e., 1.71× the runtime of CostFed),
and ANAPSID’s is 3201ms (i.e., 7.34× that of CostFed).
On complex queries from LargeRDFBench, CostFed is
better than FedX on 5/8 comparable queries (C5 time
outs for both system and C1 results in runtime error
for FedX), better than SemaGrow on 8/8 queries (C5
times out for both systems and C1 results in runtime

11The SPARQL 1.1 versions of the queries are available at the
aforementioned LargeRDFBench home page

error for SemaGrow), and better than ANAPSID on 8/9
queries (C5 results in a runtime error for ANAPSID
and timeout for CostFed) queries. On these queries,
CostFed’s average (over all 10 queries) query runtime
is 122.568ms while FedX’s average is 138.838ms (i.e.,
1.13× of CostFed). SemaGrow has average runtime of
146.496ms (i.e., 1.19× of CostFed) while ANAPSID
has an average runtime of 146.014ms (i.e., 1.19× of
CostFed). Overall, the results suggest that the query
planning of CostFed results in better query runtimes as
compared to the other engines.

Note that all engines produce complete results for all
of the selected queries, except FedX for C7 (recall 0.19)
and for the SPARQL 1.1 version of C6 (recall 0.98).

8. Conclusion and Future Work

We presented CostFed, a federated engine for
SPARQL endpoint federation. CostFed implements in-
novative solutions for the selection of sources, the esti-
mation of cardinalities and the planning of queries. We
evaluated our approach against state-of-the-art federa-
tion systems. We showed that a cost-based optimization
combined with join-aware source selection can lead to
significant performance improvements. In future, we
will compute and update the CRT and CSQ values during
the index creation for each data source.Beside caching
the results of the SPARQL ASK requests we use, we
will also cache the most common intermediate results
as well as the actual join cardinalities and use them dur-
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Figure 6: Query execution times measured for the SPARQL 1.1 version of FedBench.
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Figure 7: Query execution times for the SPARQL 1.1 version of the LargeRDFBench complex queries. 20 min timeouts are added to the Avg. values.

ing the query planning and execution to optimize the
performance of CostFed.
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