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Abstract. The Web of Linked Data forms a single, globally distributed
dataspace. Due to the openness of this dataspace, it is not possible
to know in advance all data sources that might be relevant for query
answering. This openness poses a new challenge that is not addressed
by traditional research on federated query processing. In this paper we
present an approach to execute SPARQL queries over the Web of Linked
Data. The main idea of our approach is to discover data that might be
relevant for answering a query during the query execution itself. This
discovery is driven by following RDF links between data sources based
on URIs in the query and in partial results. The URIs are resolved over
the HTTP protocol into RDF data which is continuously added to the
queried dataset. This paper describes concepts and algorithms to im-
plement our approach using an iterator-based pipeline. We introduce a
formalization of the pipelining approach and show that classical itera-
tors may cause blocking due to the latency of HTTP requests. To avoid
blocking, we propose an extension of the iterator paradigm. The eval-
uation of our approach shows its strengths as well as the still existing
challenges.

1 Introduction

An increasing amount of data is published on the Web according to the Linked
Data principles [1,2]. Basically, these principles require the identification of enti-
ties with URI references that can be resolved over the HTTP protocol into RDF
data that describes the identified entity. These descriptions can include RDF
links pointing at other data sources. RDF links take the form of RDF triples,
where the subject of the triple is a URI reference in the namespace of one data
source, while the object is a URI reference in the namespace of the other. The
Web of Linked Data that is emerging by connecting data from different sources
via RDF links can be understood as a single, globally distributed dataspace [3].

Querying this dataspace opens possibilities not conceivable before: Data from
different data sources can be aggregated; fragmentary information from multiple
sources can be integrated to achieve a more complete view. However, evaluating
queries over the Web of Linked Data also poses new challenges that do not arise



1 SELECT DISTINCT ? author ?phone WHERE {
2 <http :// data . semanticweb . org / con f e r ence /eswc /2009/ proceedings>
3 swc : hasPart ?pub .
4 ?pub swc : hasTopic ? top i c .
5 ? top i c r d f s : l a b e l ? top i cLabe l .
6 FILTER regex ( str (? top i cLabe l ) , ” onto logy eng ine e r i ng ” , ” i ” ) .
7

8 ?pub swrc : author ? author .
9 {? author owl : sameAs ? authAlt} UNION {? authAlt owl : sameAs ? author}

10

11 ? authAlt f o a f : phone ?phone
12 }

Fig. 1. SPARQL query which asks for the phone numbers of people who authored an
ontology engineering related paper at ESWC’09 (prefix declarations omitted)

in traditional federated query processing: Due to the openness of the dataspace,
it is not possible to know all data sources that might be relevant for answering
a query in advance.

Consider, for instance, the SPARQL query [4] in Figure 1 which asks for the
phone number of people who authored an ontology engineering related paper at
the European Semantic Web Conference 2009 (ESWC’09). This query cannot be
answered from a single dataset but requires data from a large number of sources
on the Web. For instance, the list of papers and their topics (cf. lines 2 to 4) is
part of the Semantic Web Conference Corpus3; the names of the paper topics (cf.
line 5) are provided by the sources authoritative for the URIs used to represent
the topics; the phone numbers (cf. line 11) are provided by the authors. Hence,
this kind of queries can only be answered using a method to execute queries
without knowing the sources that contribute to the query result in advance. In
this paper we present such a method.

The main idea of our approach is the asynchronous traversal of RDF links to
discover data that might be relevant for a query during the query execution itself.
Hence, the query engine executes each query over a growing set of potentially
relevant data retrieved from the Web. Notice, in contrast to federated query
processing [5] – which presumes each data source provides a query service –
we do not distribute parts of the query evaluation. Instead, we only require the
data sources to publish data following the Linked Data principles. This approach
enables the execution of queries without knowing the sources that contribute to
the query result in advance. Our main contributions are:

– an approach to execute SPARQL queries over the Web of Linked Data,
– a formal description of the realization of our approach with an iterator-based

pipeline that enables an efficient query execution, and
– an extension of the iterator paradigm that avoids blocking of the query

execution caused by waiting for data from the Web.

This paper is structured as follows. First, Section 2 gives an overview of
our approach. In Section 3 we introduce an iterator-based evaluation of queries
and present a formalism to describe this kind of evaluation. Section 4 discusses
the application of an iterator-based query evaluation to our query execution
approach and presents a strategy to execute these queries more efficiently. Even
3 http://data.semanticweb.org



with these strategies, waiting for data from the Web may cause delays in query
execution. Thus, in Section 5 we introduce an extension to the iterator paradigm
that avoids blocking caused by these delays. An evaluation of our approach and
the concepts to implement it is given in Section 6. Finally, we review related
work in Section 7 and conclude in Section 8.

2 Overview of the Query Execution Approach

This section gives an informal overview of the proposed approach to execute
SPARQL queries over the Web of Linked Data. SPARQL, the query language
for RDF data [4], is based on graph patterns and subgraph matching. The ba-
sic building block from which more complex SPARQL query patterns are con-
structed is a basic graph pattern (BGP). A BGP is a set of triple patterns which
are RDF triples that may contain query variables at the subject, predicate, and
object position. During query evaluation solutions that bind values to the vari-
ables are determined.

To query the Web of Linked Data, we propose to intertwine query execution
with the traversal of RDF links to discover data that might be relevant to an-
swer the query. Using the data retrieved from looking up the URIs in a query
as a starting point we evaluate parts of the query. The intermediate solutions
resulting from this partial evaluation usually contain further URIs. These URIs
link to additional data which may provide further solutions for the same or for
other parts of the query. To determine results for the whole query we alternately
evaluate query parts and dereference URIs. Hence, during query evaluation we
continuously augment the queried dataset with potentially relevant data from
the Web. The discovery of this data is driven by the URIs in intermediate results.

Example 1. The evaluation of the query in Figure 1 may start with RDF data
retrieved from the Semantic Web Conference Corpus by dereferencing the URI
identifying the ESWC’09 proceedings. This data contains a set of RDF triples
that match the triple pattern in lines 2 and 3 of the query. The query engine
generates a set of intermediate solutions from this set. Each of these solutions
binds query variable ?pub to the URI representing one of the papers in the
ESWC’09 proceedings. Dereferencing these URIs yields RDF data about the pa-
pers including the topics of the publications. Hence, in this newly retrieved data
the query engine finds matching triples for the pattern at line 4 with the given
?pub binding. Based on these matches existing intermediate solutions can be
augmented with bindings for variable ?topic. Since the topics are also resources
represented by URIs additional data will be added to the queried dataset. The
query engine proceeds with the outlined strategy in order to determine solutions
that are results of the whole query.

To consider all data that is available by traversing RDF links from matching
triples our approach uses the following heuristic. Before we evaluate a triple
pattern in order to find matching triples in the local dataset we ensure that the
local dataset contains at least all data retrievable from dereferencing all URIs



that are part of the triple pattern. For instance, the evaluation of the triple
pattern in line 4 of our sample query using the intermediate solutions from the
triple pattern in lines 2 and 3 comprises the evaluation of multiple triple pattern,
actually – one for each ?pub binding. As discussed before, we dereference each
URI bound to variable ?pub before we evaluate the corresponding triple pattern.
Notice, in addition to the data retrieved by dereferencing the URIs in a query
as an initial seed it is also possible to load further RDF data in the local dataset
before executing the query. This possibility allows to explicitly ensure considering
data that must not be missed during query execution. Furthermore, reusing the
same local dataset for different queries may yield more complete results since an
already filled local dataset may contain data relevant to a query that would not
be discoverable by executing the query itself. Such a shared dataset, however,
requires the application of caching strategies which identify formerly retrieved
data that might be stale and that has to be requested again.

Due to the openness and the widely distributed nature of the Web we cannot
assume to find all data that is relevant to answer a query with our approach.
Hence, we should never expect complete results. The degree of completeness
depends on the structure of the network of RDF links as well as on the number
of links. In a Web sparsely populated with links chances are slight to discover
relevant data. Nonetheless, we are convinced the Web of Linked Data will rapidly
grow in the coming years and so will the number and density of links. Further
limitations of our approach are i) the need for initial URIs in the queries to start
the link traversal, ii) infinite link discovery, iii) the retrieval of unforeseeable
large RDF graphs from the Web, iv) URI dereferencing that takes unexpectedly
long, v) Linked Data servers that put restrictions to clients such as serving only
a limited number of requests per second, and vi) the possibility to overload a
server. Some of these issues might be addressed with user-configurable options
such as seed URIs, timeouts, and limits on traversal depth and filesizes. However,
further investigation is required to find suitable defaults for these options and
to address the listed issues in general.

3 Pipelining-Based Basic Graph Pattern Matching

We propose to implement our query execution approach using an iterator-based
pipeline that enables an efficient, parallelized execution of queries. Introducing
the pipelined evaluation of BGP queries over a dataset that is continuously aug-
mented with potentially relevant data from the Web requires an understanding
of the static case. Therefore, this section presents a formalism to describe a
pipelining-based evaluation of BGPs over a fixed set of RDF graphs. While the
SPARQL specification introduces different types of graph patterns we focus on
BGPs, the fundamental building block, in this paper; the application of the pre-
sented concepts to more complex query patterns is subject to further research.

3.1 Solutions in SPARQL Query Execution

A formal description of our approach requires an explicit definition of the notion
of a solution. Solutions in SPARQL are defined in the context of BGP matching



where each solution basically represents a matching subgraph in the queried
RDF graph. To describe these solutions the SPARQL specification [4] introduces
a solution mapping that binds query variables to RDF terms such as URIs and
literals. Solution mappings can be understood as a set of variable-term-pairs
where no two pairs contain the same variable. The application of such a solution
mapping µ to a BGP b, denoted with µ[b], implies replacing each variable in the
BGP by the RDF term it is bound to in the mapping; unbound variables must
not be replaced. Based on these mappings the specification defines solutions
of BGPs for RDF graphs. Since our approach is based on a local dataset that
contains multiple RDF graphs – one from each dereferenced URI – we slightly
adjust this definition and introduce solutions of BGPs for sets of RDF graphs:

Definition 1. Let b be a BGP; let G be a set of RDF graphs. The solution
mapping µ is a solution for b in G if i) µ[b] is a subgraph of

⋃
G∈G G and ii) µ

does not map variables that are not in b.

3.2 An Algorithm to Evaluate Basic Graph Patterns

During query processing a query is represented by a tree of logical operators.
From this operator tree the query engine generates a query execution plan that
implements the logical operators by physical operations. A well established ap-
proach to realize query plans is pipelining in which each solution produced by one
operation is passed directly to the operation that uses it [6]. The main advantage
of pipelining is the rather small amount of memory that is needed compared to
approaches that completely materialize intermediate results. Pipelining in query
engines is typically realized by a tree of iterators that implement the physical op-
erations [7]. An iterator is a group of three functions: Open, GetNext, and Close.
Open initializes the data structures needed to perform the operation; GetNext
returns the next result of the operation; and Close ends the iteration and re-
leases allocated resources. An iterator allows a consumer to get the results of an
operation separately, one at a time. In a tree of iterators the GetNext functions
of an iterator typically call GetNext on the child(ren) of the iterator. Hence, a
tree of iterators calculates solutions in a pull fashion.

Many in-memory RDF stores realize the evaluation of BGP queries by a tree
of iterators as follows: Each iterator is responsible for a single triple pattern of
the BGP {tp1, ... , tpn}. The iterators are chained together such that the iterator
Ii which is responsible for triple pattern tpi is the argument of the iterator Ii+1

responsible for tpi+1. Each iterator returns solution mappings that are solutions
for the set of triple patterns assigned to it and to its predecessors. For instance,
the iterator Ii returns solutions for {tp1, ... , tpi} (i ≤ n). To determine these
solutions the iterators basically execute the following three steps repeatedly:
first, they consume the solution mappings from their direct predecessor; second,
they apply these input mappings to their triple pattern; and, third, they try to
find triples in the queried RDF data that match the triple patterns resulting from
the applications of the input mappings. Figure 2 illustrates the corresponding
algorithm executed by the GetNext function of the iterators. Notice, the third



1 FUNCTION Open
2 LET G := the queried set of RDF graphs ;
3 LET Ii−1 := the iterator responsible for tpi−1 ;
4 CALL Ii−1.Open ;
5

6 LET µcur := NotFound ;
7 LET Ifind := an iterator over an empty set of RDF triples ;
8

9 FUNCTION GetNext
10 LET t := Ifind.GetNext ;
11 WHILE t = NotFound DO
12 {
13 LET µcur := Ii−1.GetNext ;
14 IF µcur = NotFound THEN
15 RETURN NotFound ;
16

17 LET Ifind := an iterator over a set of all triples that match µcur[{tpi}] in G ;
18 LET t := Ifind.GetNext ;
19 }
20 LET µ′ := the solution for µcur[{tpi}] in G that corresponds to t ;

21 RETURN µcur ∪ µ′ ;
22

23 FUNCTION Close
24 CALL Ii−1.Close ;

Fig. 2. Pseudo code notation of the Open, GetNext, and Close functions for an iterator
Ii that evaluates triple pattern tpi.

step is realized with another type of iterator that returns the matching triples.
We do not discuss this helper iterator in detail because its realization is not
important for the concepts presented in this paper. Hence, in the remainder we
simply assume the helper iterator iterates over a set of all RDF triples that
match a triple pattern in a set of RDF graphs.

3.3 A Formalization of Iterator-Based Pipelining

The set of solutions provided by an iterator Ii can be divided in subsets where
each subset corresponds to one of the solutions consumed from the direct prede-
cessor; i.e. each of these subsets contains all solutions that have been determined
based on the same input solution. We denote these subsets with SuccG(µ, i).

SuccG(µ, i) =
{
µ ∪ µ′ |µ′ is a solution for µ[{tpi}] in G}

(1)

Notice, the µ′s in Equation (1) correspond to the µ′ in the algorithm (cf. line 20
in Figure 2). There is no µ′ in Equation (1) that binds a variable which is already
bound in µ because the application of µ to {tpi} yields {tp′i} where tp′i does not
contain a variable bound in µ. Hence, each µ′ merely adds new bindings for
variables not considered in µ. For this reason it holds, if µ is a solution for
{tp1, ... , tpi−1} then each µ∗ ∈ SuccG(µ, i) is a solution for {tp1, ... , tpi}.

With ΩG
i we denote all solutions determined by the ith iterator. It holds

ΩG
i =

{
SuccG(µ0, 1) ; if i = 1⋃

µ∈ΩGi−1
SuccG(µ, i) ; else

(2)



where µ0 = ∅ is the empty solution mapping consumed by the first iterator.

Proposition 1. ΩG
n is the result for BGP {tp1, ... , tpn} from RDF graph set G.

Proof. Each µ ∈ ΩG
1 is a solution from G for {tp1} because

ΩG
1 = SuccG(µ0, 1) =

{
µ0 ∪ µ′ |µ′ is a solution for µ0[{tp1}] from G}

=
{
µ′ |µ′ is a solution for {tp1} from G}

Let i > 1 and let ΩG
i−1 all solutions from G for {tp1, ... , tpi−1}. Due to Equa-

tion (1) it holds for each µ ∈ ΩG
i−1 that each µi ∈ SuccG(µ, i) is a solution

from G for {tp1, ... , tpi}. Furthermore, ΩG
i is complete because it is the union of

SuccG(µ, i) for all possible µ ∈ ΩG
i−1. Hence, ΩG

n is the complete result from G
for {tp1, ... , tpn}. ¤

4 Evaluating Basic Graph Patterns over the Web

In this section we formalize our approach to evaluate BGP queries over the
Web of Linked Data and we introduce strategies to execute these queries more
efficiently.

To query the Web of Linked Data we cannot evaluate BGP queries over
a fixed set of RDF graphs as introduced in the previous section. Instead, the
queried dataset grows during the evaluation since we continuously add further,
potentially relevant data by following the heuristic outlined in Section 2. The
heuristic is based on the assumption that RDF graphs retrieved by looking up
the URIs in a triple pattern might contain triples that match the triple pattern.
Hence, we require that the local dataset contains these RDF graphs before we
evaluate the triple pattern. More formally, we have to guarantee the following
requirement.

Requirement 1 The calculation of SuccG(µ, i) requires that

1. deref
(
subj (µ[tpi])

) ∈ G if subj (µ[tpi]) is a URI,

2. deref
(
pred(µ[tpi])

) ∈ G if pred(µ[tpi]) is a URI, and

3. deref
(
obj (µ[tpi])

) ∈ G if obj (µ[tpi]) is a URI

where µ[tp] denotes the application of solution mapping µ to a triple pattern tp;
subj (tp), pred(tp), and obj (tp) denote the subject, predicate and object of a triple
pattern tp, respectively; and deref (u) represents the RDF graph that we retrieve
by dereferencing the URI u.

To guarantee Requirement 1 we adjust the GetNext function of our iterators
as follows. Before the algorithm initializes the embedded helper iterator (cf.
line 17 in Figure 2) it invokes a function called EnsureRequirement. This func-
tion checks the requirement and, if necessary, it dereferences URIs and waits
until dereferencing has been finished. Figure 3 illustrates the adjusted GetNext



1 FUNCTION GetNext
2 LET t := Ifind.GetNext ;
3 WHILE t = NotFound DO
4 {
5 LET µcur := Ii−1.GetNext ;
6 IF µcur = NotFound THEN
7 RETURN NotFound ;
8

9 CALL EnsureRequirement for µcur[{tpi}] ;
10 LET Ifind := an iterator over a set of all triples that match µcur[{tpi}] in G ;
11 LET t := Ifind.GetNext ;
12 }
13

14 LET µ′ := the solution for µcur[{tpi}] in G that corresponds to t ;

15 RETURN µcur ∪ µ′ ;

Fig. 3. Pseudo code notation of the GetNext function for an iterator Ii that evaluates
triple pattern tpi over the Web of Linked Data.

function. Based on this adjustment the queried dataset G grows during the iter-
ative calculation of ΩG

n . The calculation of any solution subset SuccG(µ, i) uses
the dataset G that is augmented with all RDF graphs retrieved for the calcula-
tion of previous subsets. However, each time the algorithm initializes Ifind (cf.
line 10 in Figure 3) it uses an isolated snapshot of G that cannot be augmented
by other iterators. This isolation avoids conflicts and an endless query execution
because once the calculation of any subset SuccG(µ, i) has been initiated later
additions to G are ignored for that calculation. The downside of this isolation
is that the completeness of a query result depends on the order by which the
iterators for the patterns in a query are chained. The development of concepts
to find an order that is optimal with respect to maximizing result completeness
is subject to further research.

The dereferencing requests in function EnsureRequirement of the adjusted
iterators should be implemented by asynchronous function calls such that mul-
tiple dereferencing tasks can be processed in parallel. However, waiting for the
completion of the dereferencing tasks in function EnsureRequirement delays the
execution of the GetNext function and, thus, slows down query execution times.
It is possible to address this problem with the following prefetching strategy.
Instead of dereferencing each URI at the time when the corresponding RDF
graph is required we suggest to initiate the dereferencing task as soon as the
URI becomes part of a solution. Considering that dereferencing requests are
implemented by asynchronous function calls the query engine can immediately
proceed the evaluation while the dereferencing tasks are executed separately.
Whenever a subsequent iterator requires the corresponding dereferencing result
chances are high that the dereferencing task has already been completed. Fig-
ure 4 illustrates an adjusted GetNext function that realizes our URI prefetching
strategy in lines 16 and 17. In Section 6.2 we analyze the impact of URI prefetch-
ing on query execution times.



1 FUNCTION GetNext
2 LET t := Ifind.GetNext ;
3 WHILE t = NotFound DO
4 {
5 LET µcur := Ii−1.GetNext ;
6 IF µcur = NotFound THEN
7 RETURN NotFound ;
8

9 CALL EnsureRequirement for µcur[{tpi}] ;
10 LET Ifind := an iterator over a set of all triples that match µcur[{tpi}] in G ;
11 LET t := Ifind.GetNext ;
12 }
13

14 LET µ′ := the solution for µcur[{tpi}] in G that corresponds to t ;
15

16 FOR EACH (var, val) ∈ µ′ DO

17 IF val is a URI AND deref
�
val
�

/∈ G THEN Request the retrieval of deref
�
val
�
;

18

19 RETURN µcur ∪ µ′ ;

Fig. 4. Pseudo code notation of the GetNext function for an iterator Ii that prefetches
URIs during the evaluation of triple pattern tpi.

5 Non-Blocking Iterators

In this section we introduce an extension to the iterator paradigm. This exten-
sion prevents unnecessary long execution times caused by delays that cannot be
avoided with URI prefetching.

URI prefetching as introduced in the previous section is an attempt to avoid
delays during the execution of the GetNext function. However, this approach is
not always sufficient as the following example demonstrates.

Example 2. Let tpi = (?x,?p,?o) the ith triple pattern in a BGP {tp1, ... , tpn}
where 1 < i ≤ n. Consider the iterator Ii which is responsible for tpi is asked for
the next solution by calling its GetNext function. Let the current helper iterator
Ifind of Ii be exhausted so that the algorithm enters the while loop (cf. line 3
in Figure 4) and requests the next input solution from the predecessor iterator
Ii−1 (cf. line 5). Let Ii−1 return a solution mapping µi−1 that binds variable
?x to URI uri where this binding has been determined by Ii−1; i.e. it holds
(?x, uri) ∈ µi−1 where µi−1 ∈ SuccG(µ, i − 1) ⊆ ΩG

i−1 but (?x, uri) /∈ µ. Let
deref (uri) /∈ G. In this case, Ii−1 has requested the retrieval of deref (uri) just
before it has returned µi−1 to Ii. Since Ii immediately calls EnsureRequirement
for µi−1[{tpi}] = (uri,?p,?o) it is very likely that the dereferencing of uri is still
in progress. Hence, Ii has to wait before it can initialize the next helper iterator
and return the next solution.

As can be seen from Example 2 the prefetching of URIs does not prevent delays in
the GetNext function in general. Unfortunately, an iterator that waits during the
execution of GetNext causes a blocking of the whole query execution because the
subsequent iterators wait for the result of GetNext and the predecessor iterators
are not requested to do anything either. This problem might be addressed with



program parallelism and the use of asynchronous pipelines [8]. According to
this approach all iterators work in parallel; each pair of connected iterators
shares a buffering queue to which the providing iterator asynchronously adds
its intermediate solutions; the consuming iterator dequeues these solutions to
process them. However, the realization of this approach would require a major
rewrite of existing query engines that are based on synchronous pipelines. For this
reason we propose an extension to the iterator paradigm which is compatible with
the commonly used synchronous pipelining approach presented in this paper.

The core idea of our extension is to enable iterators to temporarily reject
a solution consumed from its predecessor. Given such a possibility an iterator
that finds Requirement 1 is not fulfilled for an input solution could reject that
solution and ask the predecessor for another solution. To enable this possibility
we add a new function, called Reject, to the iterator paradigm and we slightly
extend the semantics of the GetNext function. The new function Reject treats
the result that has most recently been provided by the GetNext function as
if this result has never been provided by GetNext. This means Reject takes
the rejected result back and keeps it for later requests. The extended GetNext
function either returns the next result of the operation performed by the iterator
or it returns one of the rejected results. Once a formerly rejected result is not
being rejected again it must not be kept any further. Notice, we allow GetNext
to decide nondeterministically to return a newly calculated result or to return a
formerly rejected result. This approach provides more flexibility for realizations
of our extended iterator paradigm. Analogously, we do not prescribe which of the
rejected results have to be returned. However, in most cases it would probably
be unwise to immediately reoffer a recently rejected result.

Figure 5 illustrates an application of the extended iterator paradigm to the
iterators that evaluate BGP queries over the Web of Linked Data. Notice, these
iterators call a function CheckRequirement which is similar to the function
EnsureRequirement introduced in Section 4. Both functions check Require-
ment 1 and, if necessary, request the dereferencing of URIs. However, in contrast
to EnsureRequirement the function CheckRequirement does not wait until the
requested data has been retrieved, but, it returns an indication that either Re-
quirement 1 is fulfilled or that the retrieval of data has been requested. In the
latter case the algorithm in function GetNext rejects the current input solution
from the predecessor iterator (cf. line 39 in Figure 5). Hence, the extended it-
erator paradigm allows to temporarily reject input solutions. This possibility to
postpone the processing of certain solutions has a significant impact on query
execution times as our evaluation in Section 6.2 illustrates.

6 Evaluation

As a proof-of-concept, we implemented our approach to query the Web of Linked
Data in the Semantic Web Client Library4 (SWClLib). This library is available

4 http://www4.wiwiss.fu-berlin.de/bizer/ng4j/semwebclient/



1 FUNCTION Open
2 LET G := the queried set of RDF graphs ;
3 LET Ii−1 := the iterator responsible for tpi−1 ;
4 CALL Ii−1.Open ;
5

6 LET µcur := NotFound ;
7 LET Ifind := an iterator over an empty set of RDF triples ;
8

9 LET Ψ := an empty list ; // used to keep rejected solutions
10 LET µlast := NotFound ; // used to hold the most recently provided solutions
11

12

13 FUNCTION GetNext
14 LET new := a randomly choosen element from {TRUE,FALSE} ;
15 IF Ψ is not empty AND new = FALSE THEN
16 LET µlast := the first element in Ψ ;
17 Remove µlast from Ψ ;
18 RETURN µlast ;
19

20 LET t := Ifind.GetNext ;
21 WHILE t = NotFound DO
22 {
23 LET µcur := Ii−1.GetNext ;
24 IF µcur = NotFound THEN
25 {
26 IF Ψ is empty THEN
27 LET µlast := NotFound ;
28 RETURN µlast ;
29

30 LET µlast := the first element in Ψ ;
31 Remove µlast from Ψ ;
32 RETURN µlast ;
33 }
34

35 IF CheckRequirement for µcur[{tpi}] returned TRUE THEN
36 LET Ifind := an iterator over a set of all triples that match µcur[{tpi}] in G ;
37 LET t := Ifind.GetNext ;
38 ELSE
39 CALL Ii−1.Reject ;
40 }
41

42 LET µ′ := the solution for µcur[{tpi}] in G that corresponds to t ;
43

44 FOR EACH (var, val) ∈ µ′ DO

45 IF val is a URI AND deref
�
val
�

/∈ G THEN Request the retrieval of deref
�
val
�
;

46

47 LET µlast := µcur ∪ µ′ ;
48 RETURN µlast ;
49

50

51 FUNCTION Reject
52 IF µlast 6= NotFound THEN Append µlast to Ψ ;
53

54

55 FUNCTION Close
56 CALL Ii−1.Close ;

Fig. 5. Pseudo code notation of the Open, GetNext, Reject, and Close functions for a
non-blocking iterator Ii that evaluates triple pattern tpi.



as Free Software; it is portable to any major platform due to its implementation
in Java. Based on SWClLib we evaluate our approach in this section; we present
real-world use cases and we evaluate the iterator-based implementation in a
controlled environment.

6.1 Real-World Examples

To demonstrate the feasibility of our approach we tested it with the following
four queries that require data from multiple data sources to be answered:

Q1: Return phone numbers of authors of ontology engineering papers at ESWC09
Q2: What are the interests of the people Tim Berners-Lee knows?
Q3: What natural alternatives can be used instead of the drug “Varenicline”?
Q4: Return the cover images of soundtracks for movies directed by Peter Jackson.

Our demo page5 provides the SPARQL representations of the test queries
and it allows to execute these queries using SWClLib. In Table 1 we present
average measures for these executions; the table illustrates the number of query
results for each query, the number of RDF graphs retrieved during query exe-
cution, the number of servers from which the graphs have been retrieved, and
the execution time. The first query, Q1, which is the sample query introduced in
Section 1 (cf. Figure 1) has been answered using the Semantic Web Conference
Corpus, DBpedia, and personal FOAF profiles. Answering query Q2 required
data from Tim Berners-Lee as well as data from all the people he knows. Query
Q3 was answered with data retrieved from the DrugBank database, the Disea-
some dataset, and the Traditional Chinese Medicine dataset. The results for Q4
have been constructed with data from LinkedMDB and the MusicBrainz dataset.

Table 1. Statistics about the test queries.

query Q1 Q2 Q3 Q4

# of results 2 27 7 5
# of retrieved graphs 297 85 28 442
# of accessed servers 16 46 6 6

execution time 3min 47sec 1min 11sec 0min 46sec 1min 24sec

In addition to the test queries we developed Researchers Map [9] to demon-
strate that our approach is suitable for applications that consume Linked Data.
Researchers Map is a simple mash-up that is solely based on the results of queries
evaluated over the Web of Linked Data. The main feature of Researchers Map
is a map of professors from the German database community; the list of profes-
sors in the map can be filtered by research interests; selecting a professor opens
a list of her/his publications. This application relies on data published by the
professors as well as on data from DBpedia and the DBLP dataset.
5 http://squin.informatik.hu-berlin.de/SQUIN/



6.2 The Impact of URI Prefetching and Non-Blocking Iterators

Based on the SWClLib we conducted experiments to evaluate the presented
concepts for an iterator-based realization of our query execution approach. For
our tests we adopt the Berlin SPARQL Benchmark (BSBM) [10]. The BSBM
executes a mix of 12 SPARQL queries over generated sets of RDF data; the
datasets are scalable to different sizes based on a scaling factor. Using these
datasets we set up a Linked Data server6 which publishes the generated data
following the Linked Data principles. With this server we simulate the Web of
Linked Data in our experiments.

To measure the impact of URI prefetching and of our iterator paradigm ex-
tension we use the SWClLib to execute the BSBM query mix over the simulated
Web. For this evaluation we adjust the SPARQL queries provided by BSBM in
order to access our simulation server. We conduct our experiments on an Intel
Core 2 Duo T7200 processor with 2 GHz, 4 MB L2 cache, and 2 GB main mem-
ory. Our test system runs a recent 32 bit version of Gentoo Linux with Sun Java
1.6.0. We execute the query mix for datasets generated with scaling factors of 10
to 60; these datasets have sizes of 4,971 to 26,108 triples, respectively. For each
dataset we run the query mix 6 times where the first run is for warm up and is
not considered for the measures.

Figure 6(a) depicts the average times to execute the query mix with three dif-
ferent implementations of SWClLib: i) without URI prefetching, ii) with prefetch-
ing, and iii) with the extended iterators that postpone the processing of input
solutions. As can be seen from the measures URI prefetching reduces the query
execution times to about 80%; our non-blocking iterators even halve the time.

(a) (b)

Fig. 6. Average times to execute the BSBM query mix with the SWClLib over a
simulated Web of different sizes measured without URI prefetching, with prefetching,
and with the extended iterators that temporarily reject input solutions, respectively.

6 Our server is based on RAP Pubby which is available from http://www4.wiwiss.fu-
berlin.de/bizer/rdfapi/tutorial/RAP Pubby.htm.



The chart in Figure 6(b) puts the measures in relation to the time it takes
to execute the query mixes without the need to retrieve data from the Web. We
obtained this optimum by executing each query twice over a shared dataset; we
measured the second executions which did not require to look up URIs because
all data has already been retrieved in the first pass. These measures represent
only the time to actually evaluate the queries as presented in Section 3. Hence,
these times are a lower bound for possible optimizations to the iterator-based
execution of our approach to query the Web of Linked Data. Using this lower
bound we calculate the times required for data retrieval in the three implemen-
tations. These times are the differences between execution times measured for
the three implementations and the lower bound, respectively. Figure 6(b) de-
picts these numbers which illustrate the significant impact of the possibility to
postpone the processing of certain input solutions in our non-blocking iterators.
The chart additionally illustrates that the data retrieval times compared to the
whole query execution time decreases for larger datasets, in particular in the
case of the non-blocking iterators.

7 Related work

In this paper we present an approach to execute queries over the Web of Linked
Data. Different solutions with a similar goal have been proposed before. These
approaches can be classified in two categories: query federation and data cen-
tralization.

Research on federated query processing has a long history in database re-
search. Sheth and Larson [5] provide an overview of the concepts developed in
this context. Current approaches adapt these concepts to provide integrated ac-
cess to distributed RDF data sources on the Web. The DARQ engine [11], for
instance, decomposes a SPARQL query in subqueries, forwards these subqueries
to multiple, distributed query services, and, finally, integrates the results of the
subqueries. Very similar to the DARQ approach the SemWIQ [12] system con-
tains a mediator service that transparently distributes the execution of SPARQL
queries. Both systems, however, do not actively discover relevant data sources
that provide query services.

In contrast to federation based systems the idea of centralized approaches is
to provide a query service over a collection of Linked Data copied from different
sources on the Web. For instance, OpenLink Software republishes the majority
of the datasets from the Linking Open Data community project7 on a single
site8; users can issue SPARQL queries over the whole set of mirrored datasets.
As with the federation based systems this approach executes queries only on
selected datasets that are part of the collection. Another form of the centralized
approach are search engines for the Web of Linked Data such as Sindice [13],
Swoogle [14], and Watson [15]. These search engines crawl the Web by following
RDF links, index discovered data, and provide query interfaces to their indexes.
7 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
8 http://lod.openlinksw.com



In contrast to our approach where the queried data is discovered and retrieved
at query execution time the crawlers collect the queried data in advance. Due
to the possibility to consider data that would not be discovered by our method
a crawling-based approach might return more complete query results. However,
setting up an index that covers large amounts of data on the Web requires much
more resources (e.g. storage, compute power, administrative personnel) than is
needed to apply our approach. Furthermore, our method is superior with respect
to the timeliness of query results because we only use that data that is available
at the time of query execution.

The idea of looking up URIs during application runtime as in our approach
has first been proposed by Berners-Lee et al. [16]. The authors outline an algo-
rithm that traverses RDF links in order to obtain more data about the resources
presented in the Tabulator Linked Data browser. Our approach is based on the
idea of Berners-Lee et al. We integrate this idea in the process of query execu-
tion and, thus, resolve the need to implement link traversal algorithms in each
application that consumes Linked Data.

8 Conclusion

In this paper we introduce an approach to query the Web of Linked Data and
we present concepts and algorithms to implement this approach. Our approach
is based on traversing RDF links to discover data that might be relevant for a
query during the query execution itself. We propose to implement this idea with
an iterator-based pipeline and a URI prefetching approach to execute queries
efficiently. To improve the performance of query execution even more the paper
introduces an extension to the iterator paradigm that allows to temporarily
reject certain input results. We provide the Semantic Web Client Library as
a first prototype that implements our approach; an application that uses this
library demonstrates the feasibility of our idea.

Our approach benefits from a high number of links in the Web of Linked Data;
the more links exist the more complete results can be expected because more
relevant data might be discovered. In addition to relying on a dense network of
links, sharing the queried dataset and in advance crawling show great promise
to improve the completeness of the results. In both approaches query execution
does not have to start on an empty dataset. Instead, potentially relevant data
might already be available. Hence, we are investigating possibilities to combine
these techniques with our approach. Such a combination introduces the need
for a proper caching solution with suitable replacement strategies and refreshing
policies. We are currently working on these issues.

The openness of the Web of Linked Data holds an enormous potential which
could enable users to benefit from a virtually unbound set of data sources. How-
ever, this potential will become available not until applications take advantage
of the characteristics of the Web which requires approaches to discover new data
sources by traversing data links. This paper presents a proof of concept to enable
this evolutionary step.
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