
LDQL: A Query Language for the Web of Linked Data

Olaf Hartig1 and Jorge Pérez2

1 http://olafhartig.de/

2 Department of Computer Science, Universidad de Chile
jperez@dcc.uchile.cl

Abstract The Web of Linked Data is composed of tons of RDF documents in-
terlinked to each other forming a huge repository of distributed semantic data.
Effectively querying this distributed data source is an important open problem
in the Semantic Web area. In this paper, we propose LDQL, a declarative lan-
guage to query Linked Data on the Web. One of the novelties of LDQL is that
it expresses separately (i) patterns that describe the expected query result, and
(ii) Web navigation paths that select the data sources to be used for computing
the result. We present a formal syntax and semantics, prove equivalence rules,
and study the expressiveness of the language. In particular, we show that LDQL
is strictly more expressive than the query formalisms that have been proposed
previously for Linked Data on the Web. The high expressiveness allows LDQL
to define queries for which a complete execution is not computationally feasible
over the Web. We formally study this issue and provide a syntactic sufficient con-
dition to avoid this problem; queries satisfying this condition are ensured to have
a procedure to be effectively evaluated over the Web of Linked Data.

1 Introduction
In recent years an increasing amount of structured data has been published and inter-
linked on the World Wide Web (WWW) in adherence to the Linked Data principles [3].
These principles are based on standard Web technologies. In particular, (i) the Hypertext
Transfer Protocol (HTTP) is used to access data, (ii) HTTP-based Uniform Resource
Identifiers (URIs) are used as identifiers for entities described in the data, and (iii) the
Resource Description Framework (RDF) is used as data model. Then, any HTTP URI
in an RDF triple presents a data link that enables software clients to retrieve more data
by looking up the URI with an HTTP request. The adoption of these principles has lead
to the creation of a globally distributed dataspace: the Web of Linked Data.

The emergence of the Web of Linked Data makes possible an online execution of
declarative queries over up-to-date data from a virtually unbounded set of data sources,
each of which is readily accessible without any need for implementing source-specific
APIs or wrappers. This possibility has spawned research interest in approaches to query
Linked Data on the WWW as if it was a single (distributed) database. For an overview
on query execution techniques proposed in this context refer to [12].

The main contribution of this paper is the proposal of LDQL, a novel query lan-
guage for the Web of Linked Data. The most important feature of LDQL is that it
clearly separates query components for selecting query-relevant regions of the Web of
Linked Data, from components for specifying the query result that has to be constructed
from the data in the selected regions. The most basic construction in LDQL are tuples
of the form 〈L,Q〉 where L is an expression used to select a set of relevant documents,
and Q is a query intended to be executed over the data in these documents as if they

http://olafhartig.de/

were a single RDF repository. In an abstract setting one can use several formalisms to
express L and Q. In our proposal, for the former part we introduce the notion of link
path expressions that are a form of nested regular expressions (with some other impor-
tant features) used to navigate the link graph of the Web. For the latter, we use standard
SPARQL graph patterns. To begin evaluating these queries one needs to specify a set of
seed URIs. The language also possesses features to dynamically (at query time) identify
new seed URIs to evaluate portions of a query. Additionally, such queries can be com-
bined by using conjunctions, disjunctions, and projection. We present a formal syntax
and semantics for LDQL, propose some rewrite rules, and study its expressive power.

While there does not exist a standard language for expressing queries over Linked
Data on the WWW, a few options have been proposed. In particular, a first strand of re-
search focuses on extending the scope of SPARQL such that an evaluation of SPARQL
queries over Linked Data has a well-defined semantics [9,11,14,18]. A second strand
of research focuses on navigational languages [7,14]. Although these languages have
different motivations, a commonality of all these proposals is that, in contrast to LDQL,
the definition of query-relevant regions of the Web of Linked Data and the definition of
query-relevant data within the specified regions are mixed.

As our second main contribution we compare LDQL with three previously pro-
posed formalisms for querying the Web of Linked Data: SPARQL under reachability-
based query semantics [11], NautiLOD [7], and SPARQL Property Path patterns under
context-based semantics [14]. We formally prove that LDQL is strictly more expressive
than every one of these. We show that for every query Q in the previous languages, one
can effectively construct an LDQL query which is equivalent to Q. Moreover, for every
one of the previous languages, there exists an LDQL query that cannot be expressed in
that language. These results show that LDQL presents an interesting expressive power.

The downside of the expressiveness provided by LDQL is the existence of queries
for which a complete execution is not feasible in practice. To capture this issue formally,
we define a notion of Web-safeness for LDQL queries. Then, the obvious question that
arises is how to identify LDQL queries that are Web-safe. Our last technical contribution
is the identification of a sufficient syntactic condition for Web-safeness.

The rest of the paper is structured as follows. Section 2 introduces a data model
that provides the basis for defining the semantics of LDQL. In Section 3 we formally
define the syntax and semantics of LDQL and show some simple algebraic properties. In
Section 4 we compare LDQL with the three mentioned languages, and in Section 5 we
focus on Web-safeness. Section 6 concludes the paper and sketches future work. Proofs
of the formal results in this paper can be found in an extended version of the paper [13].

A preliminary version of some of the results in this paper have been presented in a
workshop [10]. This paper is a substantial extension of [10] refining the definition of
LDQL and introducing important changes to the syntax and the semantics of the lan-
guage. Moreover, the comparison with previous proposals was not discussed in [10].

2 Data Model
In this section we introduce a structural data model that captures the concept of a Web
of Linked Data formally. As usual [7,9,11,14,18], for the definitions and analysis in this
paper, we assume that the Web is fixed during the execution of any single query.

We use the RDF data model [5] as a basis for our model of a Web of Linked Data.
That is, we assume three pairwise disjoint, infinite sets U (URIs), B (blank nodes), and
L (literals). An RDF triple is a tuple 〈s, p, o〉 ∈ T with T = (U ∪B)×U×(U ∪B∪L).
For any RDF triple t = 〈s, p, o〉 we write uris(t) to denote the set of all URIs in t.

Additionally, we assume another infinite set D that is disjoint from U , B, and L,
respectively. We refer to elements in this set as documents and use them to represent the
concept of Web documents from which Linked Data can be extracted. Hence, we as-
sume a function, say data, that maps each document d ∈ D to a finite set of RDF triples
data(d) ⊆ T such that the data of each document uses a unique set of blank nodes.

Given these preliminaries, we are ready to define a Web of Linked Data.

Definition 1. A Web of Linked Data is a tuple W = 〈D, adoc〉 that consists of a set
of documents D ⊆ D and a partial function adoc : U → D that is surjective.

Function adoc of a Web of Linked Data W = 〈D, adoc〉 captures the relationship
between the URIs that can be looked up in this Web and the documents that can be
retrieved by such lookups. Since not every URI can be looked up, the function is par-
tial. For any URI u ∈ U with u ∈ dom(adoc) (i.e., any URI that can be looked up
in W), document d = adoc(u) can be considered the authoritative source of data for u
in W (hence, the name adoc). To accommodate for documents that are authoritative
for multiple URIs, we do not require injectivity for function adoc. However, we require
surjectivity because we conceive documents as irrelevant for a Web of Linked Data if
they cannot be retrieved by any URI lookup in this Web.

Let W = 〈D, adoc〉 be a Web of Linked Data. W is said to be finite [11] if its set D
of documents is finite. In this paper we assume that every Web of Linked Data is finite.
Given documents d, d′ ∈ D and a triple t ∈ data(d), we say that a URI u ∈ uris(t)
establishes a data link from d to d′, if adoc(u) = d′. As a final concept, we formalize
the notion of a link graph associated to W. This graph has documents in D as nodes,
and directed edges representing data links between documents. Each edge is associated
with a label that identifies both the particular RDF triple and the URI in this triple that
establishes the corresponding data link. These labels shall provide the basis for defining
the navigational component of our query language.

Definition 2. The link graph of a Web of Linked Data W = 〈D, adoc〉, is a directed,
edge-labeled multigraph, GW = 〈D,EW 〉, with set of edgesEW ⊆ D×(T×U)×D de-
fined as EW =

{
〈dsrc, (t, u), dtgt〉 | t ∈ data(dsrc), u ∈ uris(t) and dtgt = adoc(u)

}
.

For a link graph edge e = 〈dsrc, (t, u), dtgt〉, tuple (t, u) is the label of e. Moreover,
we sometimes write e ∈ GW to denote that e is an edge in the link graph GW .

Example 1. As a running example for this paper assume a simple Web of Linked Data
Wex = 〈Dex, adocex〉 with three documents, dA, dB, and dC (i.e., Dex = {dA, dB, dC}).
The data in these documents are the following sets of RDF triples:

data(dA) = {〈uA, p1, uB〉, data(dB) = {〈uB, p1, uC〉};
〈uB, p2, uC〉}; data(dC) = {〈uA, p2, uC〉};

Figure 1. The link graph GWex of our example Web of Linked Data Wex.

and for function adocex we have: adocex(uA)=dA, adocex(uB)=dB, adocex(uC)=dC,
and adocex(p1) = dA (i.e., dom(adocex) = {uA, uB, uC, p1}). This Web contains 10
data links. For instance, URI uA in the RDF triple 〈uA, p2, uC〉 ∈ data(dC) establishes
a data link to document dA. Hence, the corresponding edge in the link graph of Wex is〈
dC, (〈uA, p2, uC〉, uA), dA

〉
. Figure 1 illustrates the link graph GWex with all 10 edges.

3 Definition of LDQL
This section defines our Linked Data query language, LDQL. LDQL queries are meant
to be evaluated over a Web of Linked Data and each such query is built from two types
of components: Link path expressions (LPEs) for selecting query-relevant documents of
the queried Web of Linked Data; and SPARQL graph patterns for specifying the query
result that has to be constructed from the data in the selected documents. For this paper,
we assume that the reader is familiar with the definition of SPARQL [8], including the
algebraic formalization introduced in [16,2]. In particular, for SPARQL graph patterns
we closely follow the formalization in [2] considering operators AND, OPT, UNION, FILTER,
and GRAPH, plus the operator BIND defined in [8]. We begin this section by introducing
the most basic concept of our language, the notion of link patterns. We use link patterns
as the basis for navigating the link graph of a Web of Linked Data.

3.1 Link Patterns

A link pattern is a tuple in
(
U ∪{ ,+}

)
×
(
U ∪{ ,+}

)
×
(
U ∪L∪{ ,+}

)
. Link pat-

terns are used to match link graph edges in the context of a designated context URI. The
special symbol + denotes a placeholder for the context URI. The special symbol de-
notes a wildcard that will drive the direction of the navigation. Before formalizing how
link graph edges actually match link patterns, we show some intuition. Consider the
link graph of Web Wex in Example 1 (see Fig. 1), and the link pattern 〈+, p1, 〉. Intu-
itively, in the context of URI uA, the edge with label (〈uA, p1, uB〉, uB) from document
dA to document dB, matches the link pattern 〈+, p1, 〉. Notice that in the matching,
the context URI uA takes the place of symbol +, and uB takes the place of the wildcard
symbol . Notice that uB also denotes the direction of the edge that matches the link
pattern. On the other hand, the edge with label (〈uA, p1, uB〉, uA) from dA to dA, does
not match 〈+, p1, 〉; although uB can take the place of the wildcard symbol , the
direction of the edge is not to uB. That is, when matching an edge labeled by (t, u) we
require URI u to be taking the place of a wildcard in the link pattern. When more than
one wildcard symbol is used, the link pattern can be matched by edges pointing to the

direction of any of the URIs taking the place of a wildcard. For instance, in the context
of uA, the link pattern 〈 , p2, 〉 is matched by edges 〈dA, (〈uB, p2, uC〉, uB), dB〉 and
〈dA, (〈uB, p2, uC〉, uC), dC〉. The next definition formalizes this notion of matching.

Definition 3. A link graph edge with label (〈x1, x2, x3〉, u) matches a link pattern
〈y1, y2, y3〉 in the context of a URI uctx if the following two properties hold:

1. there exists i ∈ {1, 2, 3} such that yi = and xi = u, and
2. for every i ∈ {1, 2, 3} either yi = + and xi = uctx, or yi = xi, or yi = .

One of the rationales for adopting the notion of a context URI and the + symbol
in our definition of link patterns, is to support cases in which link graph navigation
has to be focused solely on data links that are authoritative. A data link represented
by link graph edge 〈dsrc, (t, u), dtgt〉 ∈ GW is authoritative in a Web of Linked Data
W = 〈D, adoc〉 if dsrc = adoc(u′) for some URI u′ ∈ uris(t). Thus, if we fix a context
URI uctx, a link pattern that uses the + symbol allows us to follow only authoritative
data links from document dctx = adoc(uctx).

3.2 LDQL Queries

The most basic construction in LDQL queries are tuples of the from 〈L,P 〉 where L
is an expression used to select a set of documents from the Web of Linked Data, and
P is a SPARQL graph pattern to query these documents as if they were a single RDF
dataset. In an abstract setting, one can use any formalism to specify L as long as L
defines sets of RDF documents. In our proposal we use what we call link path expres-
sions (LPEs) that are a form of nested regular expressions [17] over the alphabet of link
patterns. Every link path expression begins its navigation in a context URI, traverses
the Web, and returns a set of URIs; these URIs are used to construct an RDF dataset
with all the documents to be retrieved by looking up the URIs. This dataset is passed
to the SPARQL graph pattern to obtain the final evaluation of the whole query. Besides
the basic constructions of the form 〈L,P 〉, in LDQL one can also use AND, UNION and
projection, to combine them. We also introduce an operator SEED that is used to dynam-
ically change, at query time, the seed URI from which the navigation begins. The next
definition formalizes the syntax of LDQL queries and LPEs.

Definition 4. The syntax of LDQL is given by the following production rules in which
lp is an arbitrary link pattern, ?v is a variable, P is a SPARQL graph pattern (as per [2]),
V is a finite set of variables, and U is a finite set of URIs:

q := 〈lpe, P 〉 | (SEED U q) | (SEED ?v q) | (q AND q) | (q UNION q) | πV q
lpe := ε | lp | lpe/lpe | lpe|lpe | lpe∗ | [lpe] | 〈?v, q〉

Any expression that satisfies the production q is an LDQL query, any expression that
satisfies the production lpe is a link path expression (LPE), and any LDQL query of
the form 〈lpe, P 〉 is a basic LDQL query.

Before going into the formal semantics of LDQL and LPEs, we give some more
intuition about how these expressions are evaluated in a Web of Linked Data W. As
mentioned before, the most basic expression in LDQL is of the form 〈lpe, P 〉. To evalu-
ate this expression overW we will need a set S of seed URIs. When evaluating 〈lpe, P 〉,
every one of the seed URIs in S will trigger a navigation of link graph GW via the link
path expression lpe starting on that seed. That is, the seed URIs are passed to lpe as
context URIs in which the LPE should be evaluated. These evaluations of lpe will result
in a set of URIs that are used to construct a dataset over which P is finally evaluated.

Regarding the navigation of link graph GW, the most basic form of navigation is to
follow a single link graph edge that matches a link pattern lp. When a navigation via
a link pattern lp is triggered from a context URI u, we proceed as follows. We first
go to the authoritative document for u, that is adoc(u), and try to find outgoing link
graph edges that match lp in the context of u (as explained in Section 3.1). Every one
of these matches defines a new context URI u′ from which the navigation can continue.
More complex forms of navigation are obtained by combining link patterns via clas-
sical regular expression operators such as concatenation /, disjunction |, and recursive
concatenation (·)∗. The nesting operator [·] is used to test for existence of paths. When
a context URI u is passed to an expression [lpe], it checks whether GW contains a path
from dctx = adoc(u) that matches lpe . If such a path exists, the navigation can con-
tinue from the same context URI u. The most involved form of navigation is by using
the expression 〈?v, q〉 with q an LDQL query. To evaluate this expression from context
URI u one first has to pass u as a seed URI for q and recursively evaluate q from that
seed. This evaluation generates a set of solution mappings, and for every one of these
mappings its value on variable ?v is used as the new context URI from which the navi-
gation continues. Finally, note that our notion of LPEs does not provide an operator for
navigating paths in their inverse direction. The reason for omitting such an operator is
that traversing arbitrary data links backwards is impossible on the WWW.

To formally define the semantics of LDQL we need to introduce some terminology.
We first define a function datasetW (·) that from a set of URIs constructs an RDF
dataset with all the documents pointed to by those URIs inW. Formally, given a Web of
Linked Data W = 〈D, adoc〉 and a set U of URIs, datasetW (U) is an RDF dataset (as
per [8,2]) that has the set of triples {t ∈ data(adoc(u)) | u ∈ U ∩ dom(adoc)} as
default graph. Moreover, for every URI u ∈ U ∩ dom(adoc), datasetW (U) contains
the named graph 〈u,data(adoc(u))〉.

Example 2. Consider the Web Wex in Example 1 and the set of URIs U = {uA, uC}.
Then datasetWex(U) has {〈uA, p1, uB〉, 〈uB, p2, uC〉, 〈uA, p2, uC〉} as default graph, and
two named graphs, 〈uA, {〈uA, p1, uB〉, 〈uB, p2, uC〉}〉 and 〈uC, {〈uA, p2, uC〉}〉.

In the formalization of the semantics of LDQL, we use the standard join operator on
over sets of solution mappings [8,16]. We also make use of the semantics of SPARQL
graph patterns over datasets as defined in [2]. In particular, given an RDF dataset D, an
RDF graph G in D, and a SPARQL graph pattern P , we denote by [[P]]DG the evaluation
of P over G in D [2, Definition 13.3].

We are now ready to formally define the semantics of LDQL and LPEs. Given a Web
of Linked Data W and a set S of URIs, we formalize the evaluation of LDQL queries

over W from the seed URIs S, as a function [[·]]SW that given an LDQL query, produces
a set of solution mappings. Similarly, the evaluation of LPEs over W from a context
URI u, is formalized as a function [[·]]uW that given an LPE, produces a set of URIs.

Definition 5. Given a finite set S⊆U , the S-based evaluation of LDQL queries over a
Web of Linked DataW =〈D, adoc〉, denoted by [[·]]SW , is defined recursively as follows:

[[〈lpe, P 〉]]SW = [[P]]DG where D = datasetW
(⋃

u∈S [[lpe]]
u
W

)
with default graph G,

[[(SEED U q)]]SW = [[q]]UW ,

[[(SEED ?v q)]]SW =
⋃

u∈U
(
[[q]]
{u}
W on {µu}

)
where µu = {?v 7→ u} for all u ∈ U ,

[[(q1UNION q2)]]
S
W = [[q1]]

S
W ∪ [[q2]]

S
W ,

[[(q1AND q2)]]
S
W = [[q1]]

S
W on [[q2]]

S
W ,

[[πV q]]
S
W = {µ | there exists µ′∈ [[q]]SW such that µ and µ′ are

compatible and dom(µ) = dom(µ′) ∩ V }.

Now for the semantics of LPEs, given a context URI uctx ∈ dom(adoc), the uctx-based
evaluation of LPEs over W, denoted by [[·]]uctx

W , is defined recursively as follows:

[[ε]]uctx

W = {uctx},
[[lp]]uctx

W = {u ∈ U | there exist a link graph edge 〈dsrc, (t, u), dtgt〉 ∈ GW , with
dsrc = adoc(uctx), that matches lp in the context of uctx},

[[lpe1/lpe2]]
uctx

W = {u ∈ [[lpe2]]
u′

W | u′ ∈ [[lpe1]]
uctx

W },
[[lpe1|lpe2]]

uctx

W = [[lpe1]]
uctx

W ∪ [[lpe2]]
uctx

W ,

[[lpe∗]]uctx

W = {uctx} ∪ [[lpe]]uctx

W ∪ [[lpe/lpe]]uctx

W ∪ [[lpe/lpe/lpe]]uctx

W ∪ ... ,
[[[lpe]]]uctx

W = {uctx | [[lpe]]uctx

W 6= ∅},
[[〈?v, q〉]]uctx

W = {u ∈ U | there exists µ ∈ [[q]]
{uctx}
W such that µ(?v) = u}.

Moreover, if uctx /∈ dom(adoc), then [[lpe]]uctx

W = ∅ for every LPE.

Example 3. Let lpeex be the LPE 〈 , p1, 〉∗/[〈 , p2, 〉]. This LPE selects docu-
ments that can be reached via arbitrarily long paths of data links with predicate p1
and, additionally, have some outgoing data link with predicate p2. For our example
Web Wex and context URI uA, the LPE selects documents dA = adocex(uA) and
dC = adocex(uC). More precisely, we have [[lpeex]]

uA

Wex
= {uA, uC}. Note that docu-

ment dB can also be reached via a p1–path, but it does not pass the p2–related test.

Example 4. Consider a set of URIs Sex = {uA} and a basic LDQL query 〈lpeex, Bex〉
whose LPE is lpeex as introduced in Example 3 and whose SPARQL graph pattern is a
basic graph pattern that contains two triple patterns, Bex = {〈?x, p1, ?y〉, 〈?x, p2, ?z〉}.
Given that we have [[lpeex]]

uA

Wex
= {uA, uC} (cf. Example 3), datasetWex([[lpeex]]

uA

Wex
)

has the default graph {〈uA, p1, uB〉, 〈uB, p2, uC〉, 〈uA, p2, uC〉} (cf. Example 2). Then,
according to the query semantics, the result of query 〈lpeex, Bex〉 over Wex using seeds
Sex consists of a single solution mapping, namely µ = {?x 7→ uA, ?y 7→ uB, ?z 7→ uC}.

Example 5. Consider an LDQL query qex =
(

SEED ?x
〈
ε, 〈?x, p1, ?w〉

〉)
whose sub-

query is a basic LDQL query that has a single triple pattern as its SPARQL graph
pattern. Additionally, let q′ex =

〈
lpeex, {〈?x, p1, ?y〉, 〈?x, p2, ?z〉}

〉
be the basic LDQL

query introduced in Example 4, and let q′′ex be the conjunction of these two queries; i.e.,
q′′ex = (qex AND q′ex). By Example 4 we know that [[q′ex]]

Sex

Wex
= {µ} with µ = {?x 7→ uA,

?y 7→ uB, ?z 7→ uC}. Furthermore, based on the data given in Example 1, it is easy to
see that [[qex]]Sex

Wex
= {µ1, µ2} with µ1 = {?x 7→ uA, ?w 7→ uB} and µ2 = {?x 7→ uB,

?w 7→ uC}. For the Sex-based evaluation of q′′ex over Wex, the result sets [[qex]]
Sex

Wex
and

[[q′ex]]
Sex

Wex
have to be joined. Thus, we need to compute {µ1, µ2} on {µ}, which results in

a single mapping µ′ = µ1 ∪ µ = {?x 7→ uA, ?w 7→ uC, ?y 7→ uB, ?z 7→ uC}.

3.3 Algebraic Properties of LDQL Queries

As a basis for the discussion in the next sections, we show some simple algebraic prop-
erties. We say that LDQL queries q and q′ are semantically equivalent, denoted by q≡q′,
if [[q]]SW = [[q′]]SW holds for every Web of Linked Data W and every finite set S ⊆ U .

Lemma 1. The operators AND and UNION are associative and commutative.

Lemma 2. Let q1, q2, q3 be LDQL queries, the following semantic equivalences hold:

(q1 AND (q2 UNION q3)) ≡ ((q1 AND q2) UNION (q1 AND q3)) (1)
πV (q1 UNION q2) ≡ (πV q1 UNION πV q2) (2)

(SEED U (q1 UNION q2)) ≡ ((SEED U q1) UNION (SEED U q2)) (3)
(SEED ?v (q1 UNION q2)) ≡ ((SEED ?v q1) UNION (SEED ?v q2)) (4)

Lemma 1 allows us to write sequences of either AND or UNION without parentheses.
Our next result shows the power of the construction 〈?v, q〉. In particular, it shows the
somehow surprising finding that link patterns lp, concatenation /, disjunction |, and the
test [·], are just syntactic sugar as they can be simulated by using ε, 〈?v, q〉 and (·)∗.

Proposition 1. For every LDQL query q, there exists an LDQL query q′ s.t. q ≡ q′ and
every LPE in q′ consists only of the symbol ε, the construction 〈?v, q〉, and operator (·)∗.

Proof (Sketch). The proof is based on a recursive translation of link path expressions
beginning with link patterns. For instance, a link pattern of the form 〈+, p, 〉 is en-
coded by 〈?v, 〈ε, (GRAPH ?u (?u, p, ?v))〉〉, and we can similarly encode all types of link
patterns. To encode / we make use of 〈?v, q〉 and the operator AND inside q as follows.
Consider an LPE r = r1/r2. It can be shown that r is equivalent to 〈?v, q〉 where q is:(

〈r1, (GRAPH ?x { })〉 AND
(

SEED ?x 〈r2, (GRAPH ?v { })〉
))
.

Similarly, to encode | we make use of UNION and to encode [·] we use projection.

Although not strictly necessary, we decided to keep link patterns and operators /, |,
and [·] since they represent a natural and intuitive way of expressing navigation paths.

4 Comparison with Previous Linked Data Query Formalisms
In this section, we compare LDQL with alternative formalisms to query Linked Data on
the WWW. There are some general query languages for the WWW (proposed before
the advent of Linked Data) that are related to our proposal; in particular, WebSQL [15],
which is similar in spirit to LDQL but different in the features that the languages posses.
Two main novelties of LDQL compared with WebSQL are the possibility to dynami-
cally select seed URIs at query time, and the traversal of links according to properties
of the queried documents that can be defined in the same LDQL query. Neither of these
are expressible in WebSQL. While a complete formal comparison between LDQL and
WebSQL is certainly very interesting, we leave it for future work and, instead, focus on
three more recent proposals of query formalisms for the Web of Linked Data [7,11,14].
We formally show that LDQL is strictly more expressive than every one of them.

4.1 Comparison with Property Paths under Context-Based Query Semantics
Property paths (PPs for short) were introduced in SPARQL 1.1 as a way of adding
navigational power to the language [8]. PPs are a form of regular expressions that are
evaluated over a single (local) RDF graph; a PP expression is used to retrieve pairs 〈a, b〉
of nodes in the graph such that there is a path from a to b whose sequence of edge labels
belongs (as a string) to the regular language defined by the expression. The syntax of
PP expressions is given by the following grammar3, where p, u1, u2, ... , uk are URIs.

pe := p | !(u1|u2| · · · |uk) | pe/pe | pe|pe | pe∗

A PP-pattern is defined as a tuple of the form 〈α, pe, β〉 where pe is a PP expression,
and α and β are in U ∪ L ∪ V .

In [14] the authors adapted the semantics of PP-patterns so that they can be used
to query the Web of Linked Data. The proposed query semantics is called context-
based semantics [14]. To define this semantics, the authors first introduce the notion
of a context selector for a Web of Linked Data W. This context selector is a function
CW(·) that given a URI u ∈ dom(adoc) returns the RDF triples in data(adoc(u))
that have u in the subject position. Formally, for every URI u ∈ dom(adoc) we have
CW(u) = {〈s, p, o〉 ∈ data(adoc(u)) | s = u}. To simplify the exposition, the authors
extended the definition of CW(·) to also handle URIs not in dom(adoc), and literals
and blank nodes. For any such RDF term a they define CW(a) as the empty set.

The context-based semantics for PPs over the Web of Linked Data in [14] is a bag
semantics that follows closely the semantics for PPs defined in the normative semantics
of SPARQL 1.1 [8]. Hence, both semantics use a procedure, the ArbitraryLengthPath
procedure [8], to define the semantics of the (·)∗ operator. It was shown in [1] that for
sets semantics, the normative semantics of PPs can be defined by using standard tech-
niques for regular expressions. To make the comparison with LDQL, in this paper we
adapt the context-based semantics for PPs presented in [14] by following the techniques
in [1], and consider only sets of mappings. To this end, we define a function [[·]]ctxtW , that
given a PP-pattern, returns its evaluation under context-based semantics over the Web
of Linked Data W. In the definition, for a solution mapping µ and an RDF term α, we

3 In [14] the reverse path construction ˆpe is also considered. We do not consider it here as the
form of navigation of these reverse paths does not represent a traversal of the link graph.

use the notation µ[α] with the following meaning: µ[α] = µ(α) if α ∈ dom(µ), and
µ[α] = α in the other case. Similarly, µ[〈s, p, o〉] = 〈µ[s], µ[p], µ[o]〉.

[[(α, p, β)]]ctxtW = {µ | dom(µ) = {α, β} ∩ V and µ[〈α, p, β〉] ∈ CW (µ[α])}
[[(α, !(u1| · · · |uk), β)]]ctxtW = {µ | dom(µ) = {α, β} ∩ V and exists p s.t.

µ[〈α, p, β〉] ∈ CW (µ[α]) and p /∈ {u1, ... , uk}}
[[(α, pe1/pe2, β)]]

ctxt
W = π{α,β}∩V

(
[[(α, pe1, ?v)]]

ctxt
W on [[(?v, pe2, β)]]

ctxt
W

)
[[(α, pe1|pe2, β)]]

ctxt
W = [[(α, pe1, β)]]

ctxt
W ∪ [[(α, pe2, β)]]

ctxt
W

[[(α, pe∗, β)]]ctxtW = {µ | dom(µ) = {α, β} ∩ V, µ[α] = µ[β] and µ[α] ∈ terms(W)}∪
[[(α, pe, β)]]ctxtW ∪ [[(α, pe/pe, β)]]ctxtW ∪ [[(α, pe/pe/pe, β)]]ctxtW ∪ · · ·

A PP-based SPARQL query [14] is an expression formed by combining PP-patterns
using the standard SPARQL operators AND, UNION, OPT, FILTER and so on, following the
standard semantics for these operators [2]. Our next results show that LDQL is strictly
more expressive than PP-based SPARQL queries under context-based semantics.

Theorem 1. There exists an LDQL query that cannot be expressed as a PP-based
SPARQL query under context-based semantics.

Proof (Sketch). One can show that LDQL query q=
(

SEED U
〈
〈+, p, 〉, (?x, ?x, ?x)

〉)
with U = {u} cannot be expressed by PPs under context-based semantics because
this semantics is “blind” to triples that are not authoritative. For instance, in a Web
W = 〈{d, d′}, adoc〉 with data(d) = {〈u, p, u′〉}, data(d′) = {〈u′, p, u〉, 〈u, u, u〉},
adoc(u) = d and adoc(u′) = d′, the evaluation of q is the solution mapping {?x 7→ u}.
Notice that the only authoritative triple in d′ is 〈u′, p, u〉 as d′ = adoc(u′) 6= adoc(u).
Hence, one can prove that PP-based SPARQL queries under context-based semantics
cannot access triple 〈u, u, u〉 in d′, and thus, will never have {?x 7→ u} as solution.

Theorem 2. Let α, β ∈ U ∪ L ∪ V . Then, for every PP-pattern 〈α, pe, β〉, there exists
an LDQL query q such that [[〈α, pe, β〉]]ctxtW = [[q]]∅W for every Web of Linked Data W.

Proof (Sketch). In the proof we provide a translation scheme from PPs to LDQL. One
major complication is that PPs can retrieve literals and, in general, values that are not in
dom(adoc), which are difficult to handle by LPEs. For every PP-pattern 〈?x, pe, ?y〉we
construct an LDQL queryQpe(?x, ?y). For example, for 〈?x, pe1/pe2, ?y〉, our query is
π{?x,?y}

(
Qpe1(?x, ?z) ANDQpe2(?z, ?y)

)
, and for 〈?x, !(u1| · · · |uk), ?y〉 the translation

is
(

SEED ?x
〈
ε,
(
(?x, ?p, ?y) FILTER (?p 6= u1 ∧ · · · ∧ ?p 6= uk)

)〉)
. To handle pe∗ we

need to use the construction 〈?v, q〉 of LPEs, plus (·)∗.

4.2 Comparison with NautiLOD
NautiLOD is a navigation language to traverse Linked Data on the WWW and to per-
form actions (such as sending emails) during the traversal [7]. We compare LDQL with
NautiLOD without action rules. The syntax of NautiLOD expressions (without actions)
is given by the following grammar (where p ∈ U and P is a SPARQL graph pattern).

ne := p | pˆ | 〈 〉 | ne/ne | ne|ne | ne∗ | ne[(ASKP)]

In terms of our data model4, the semantics of NautiLOD expressions over a Web of
Linked DataW =〈D, adoc〉 from URI u∈dom(adoc) is defined recursively as follows.

[[p]]uW = {u′ | 〈u, p, u′〉 ∈ data(adoc(u))}
[[pˆ]]uW = {u′ | 〈u′, p, u〉 ∈ data(adoc(u))}

[[〈 〉]]uW = {u′ | 〈u, p, u′〉 ∈ data(adoc(u)) for some p ∈ U}
[[ne1/ne2]]uW = {u′′ | u′′∈ [[ne2]]u

′

W for some u′∈ [[ne1]]uW with u′∈ dom(adoc)}
[[ne1| ne2]]uW = [[ne1]]uW ∪ [[ne2]]uW

[[ne∗]]uW = {u} ∪ [[ne]]uW ∪ [[ne/ne]]uW ∪ [[ne/ne/ne]]uW ∪ · · ·
[[ne[(ASKP)]]]uW = {u′ | u′ ∈ [[ne]]uW , u′ ∈ dom(adoc) and [[P]]data(adoc(u′)) 6= ∅}

We next show that for every NautiLOD expression there exists an equivalent LDQL
query. Notice that the evaluation of a NautiLOD expression is a set of URIs, whereas the
evaluation of an LDQL query is a set of mappings. Thus, to formally state our result we
compare NautiLOD with LDQL queries that have a single free variable. Let q(?x) be an
LDQL query with ?x as free variable. We say that q(?x) and a NautiLOD expression ne
are equivalent if for every Web of Linked Data W = 〈D, adoc〉 and URIs u, u′ with
u ∈ dom(adoc) it holds that u′∈ [[ne]]uW if and only if {?x 7→ u′} ∈ [[q(?x)]]

{u}
W .

Theorem 3. For every NautiLOD expression ne, there exists an LDQL query q(?x),
with ?x a free variable, that is equivalent to ne.

Proof (Sketch). The proof begins with a simple translation that replaces every p ∈ U in
a NautiLOD expression by a link pattern 〈+, p, 〉. For instance, the expression p1/p∗2
is translated into 〈+, p1, 〉/〈+, p2, 〉∗. To translate 〈 〉 and [(ASKP)] we use 〈?v, q〉.
The complete translation poses several other complications (as described in the ex-
tended version [13]). In particular, the last step of NautiLOD expressions must be trans-
lated by using a SPARQL pattern and not an LPE. For this we use the following prop-
erty. Given a regular expression r that does not generate the empty word, one can always
write r as r1/a1| · · · |rk/ak where the ai’s are base symbols of the alphabet. Thus, we
can translate r by using LPEs to translate the ri’s as outlined above; next, translate the
ai’s by using a method similar to the proof of Theorem 2, and finally use UNION for |.

Along the same lines of Theorem 1 one can prove the following result.

Theorem 4. There exists an LDQL query q(?x) that cannot be expressed in NautiLOD.

4.3 Comparison with SPARQL under Reachability-Based Query Semantics

In [11] the author introduces a family of reachability-based query semantics based on
which SPARQL graph patterns can be used as a query language for Linked Data on
the WWW. Similar to how the scope of the SPARQL part of a basic LDQL query is
restricted to particular documents, reachability-based semantics restrict the scope of

4 In [7], all URIs have an assigned set of RDF triples (which may be empty). In our data model
one can have URIs not in dom(adoc). Hence, to properly capture the semantics of NautiLOD
in terms of our data model we have to introduce conditions of the form “u′ ∈ dom(adoc).”

SPARQL queries to documents that can be reached by traversing a well-defined set of
data links. To specify what data links belong to such a set, the notion of a reachability
criterion is used; that is, a function c : T ×U ×P → {true, false} where P denotes the
set of all SPARQL graph patterns. Then, given such a reachability criterion c, a finite
set S of URIs and a SPARQL graph pattern P , a document d ∈ D is (c, S, P)-reachable
in a Web of Linked Data W = 〈D, adoc〉 if any of the following two conditions holds:

1. There exists a URI u ∈ S such that adoc(u) = d; or
2. there exists a link graph edge 〈dsrc, (t, u), dtgt〉 ∈ GW such that (i) dsrc is (c, S, P)-

reachable in W, (ii) c(t, u, P) = true, and (iii) dtgt = d.

Notice how the second condition restricts the notion of reachability by ignoring
data links that do not satisfy the given reachability criterion c. Concrete examples of
reachability criteria are cAll, cNone, and cMatch [11], where cAll selects all data links, and
cNone ignores all data links; i.e., cAll(t, u, P) = true and cNone(t, u, P) = false for all
tuples 〈t, u, P 〉 ∈ T × U × P . In contrast to such an all-or-nothing strategy, criterion
cMatch returns true for every data link whose triple matches a triple pattern of the given
graph pattern; formally, cMatch(t, u, P) = true if and only if there exists some solution
mapping µ such that µ[tp] = t for an arbitrary triple pattern tp that is contained in P .

Given the notion of a reachability criterion, it is possible to define a family of (reach-
ability-based) query semantics for SPARQL. To this end, let c be a reachability criterion,
let S be a finite set of URIs, and let P be a SPARQL graph pattern. Then, for any Web of
Linked Data W = 〈D, adoc〉, the S-based evaluation of P over W under c-semantics,
denoted by [[P]]

R(c,S)
W , is the set of solution mappings [[P]]G where G is the RDF graph

that consists of all triples from all documents that are (c, S, P)-reachable in W.
While there exist an infinite number of possible reachability criteria, in this paper

we focus on cAll, cNone, and cMatch. The following two results show that LDQL is strictly
more expressive than SPARQL graph patterns under any of these three query semantics.

Theorem 5. Let c ∈ {cAll, cNone, cMatch}. For every SPARQL graph pattern P there
exists an LDQL query q such that [[P]]R(c,S)

W = [[q]]SW for every Web W and S ⊆ U .

Proof (Sketch). We only sketch the case of cAll-semantics. In this case, one can prove
that the LPE lpecAll = 〈 , , 〉∗ simulates the reachability criterion cAll, and, thus,
[[P]]

R(cAll,S)
W = [[〈lpecAll , P 〉]]SW . One can also find LPEs to simulate cNone and cMatch.

Theorem 6. Let c ∈ {cAll, cNone, cMatch}. There exists an LDQL query q for which there
does not exist a SPARQL patternP such that [[P]]R(c,S)

W = [[q]]SW for everyW and S ⊆ U .

5 Web-Safeness of LDQL Queries
In this section we study the “Web-safeness” of LDQL queries, where, informally, we
call a query Web-safe if a complete execution of the query over the WWW is possible
in practice (which is not the case for all LDQL queries as we shall see). To provide a
more formal definition of this notion of Web-safeness we make the following obser-
vations. While the mathematical structures introduced by our data model capture the
notion of Linked Data on the WWW formally (and, thus, allow us to provide a formal

semantics for LDQL queries), in practice, these structures are not available completely
for the WWW. For instance, given that an infinite number of strings can be used as
HTTP URIs [6], we cannot assume complete information about which URIs are in the
domain of the partial function adoc (i.e., can be looked up to retrieve some document)
and which are not; in fact, disclosing this information would require a process that sys-
tematically tries to look up every possible HTTP URI and, thus, would never terminate.
Therefore, it is also impossible to guarantee the discovery of every document in the
set D (without looking up an infinite number of URIs). Consequently, any query whose
execution requires a complete enumeration of this set is not feasible in practice. Based
on these observations, we define Web-safeness of LDQL queries as follows.

Definition 6. An LDQL query q is Web-safe if there exists an algorithm that, for any
finite Web of Linked DataW = 〈D, adoc〉 and any finite set S of URIs, computes [[q]]SW
by looking up only a finite number of URIs without assuming an a priori availability of
any information about the sets D and dom(adoc).

Example 6. Recall our example queries qex, q′ex, and q′′ex (cf. Example 5). For query
qex =

(
SEED ?x

〈
ε, 〈?x, p1, ?z〉

〉)
, any URI u ∈ U may be used to obtain a nonempty

subset of the query result as long as a lookup of u retrieves a document whose data in-
cludes RDF triples that match 〈u, p1, ?z〉. Therefore, without access toD or dom(adoc)
of the queried Web W = 〈D, adoc〉, the completeness of the computed query result
can be guaranteed only by checking each of the infinitely many possible HTTP URIs.
Hence, query qex is not Web-safe. In contrast, although it contains qex as a subquery,
query q′′ex = (qex AND q′ex) is Web-safe, and so is q′ex = 〈lpeex, Bex〉. Given uA as seed
URI, a possible execution algorithm for q′ex may first compute [[lpeex]]

uA

W by traversing
the queried Web W based on lpeex. Thereafter, the algorithm retrieves documents by
looking up all URIs u ∈ [[lpeex]]

uA

W (or simply keeps these documents after the traver-
sal); and, finally, the algorithm evaluates pattern Bex over the union of the RDF data in
the retrieved documents. If W is finite (i.e., contains a finite number of documents), the
traversal process requires a finite number of URI lookups only, and so does the retrieval
of documents in the second step; the final step does not look up any URI. To see that
q′′ex is also Web-safe we note that after executing subquery q′ex (e.g., by using the algo-
rithm as outlined before), the execution of the other (non-Web-safe) subquery qex can
be reduced to a finite number of URI lookups, namely the URIs bound to variable ?x
in solution mappings obtained for subquery q′ex. Although any other URI may also be
used to obtain solution mappings for qex, such solution mappings cannot be joined with
any of the solution mappings for q′ex and, thus, are irrelevant for the result of q′′ex.

The example illustrates that there exists an LDQL query that is not Web-safe. In
fact, it is not difficult to see that the argument for the non-Web-safeness of query qex as
made in the example can be applied to any LDQL query of the form (SEED ?x q) where
subquery q is a (satisfiable) basic LDQL query; that is, none of these queries is Web-
safe. However, the example also shows that more complex queries that contain such
non-Web-safe subqueries may still be Web-safe. Therefore, we now show properties to
identify LDQL queries that are Web-safe even if some of their subqueries are not. We
begin with queries of the forms 〈lpe, P 〉, πV q, (SEED U q), and (q1 UNION ... UNION qn).

Proposition 2. An LDQL query q is Web-safe if any of the following properties holds:

1. Query q is of the form 〈lpe, P 〉 and lpe is Web-safe, where we call an LPE Web-safe
if either (i) it is of the form 〈?v, q′〉 and LDQL query q′ is Web-safe, or (ii) it is of
any form other than 〈?v, q′〉 and all its subexpressions (if any) are Web-safe LPEs;

2. Query q is of the form πV q
′ or (SEED U q′), and subquery q′ is Web-safe; or

3. Query q is of the form (q1 UNION ... UNION qn) and each qi (1≤ i≤n) is Web-safe.

It remains to discuss LDQL queries of the form (q1 AND ... AND qm). Our discussion
of query q′′ex in Example 6 suggests that such queries can be shown to be Web-safe if all
non-Web-safe subqueries are of the form (SEED ?v q) and it is possible to execute these
subqueries by using variable bindings obtained from other subqueries. A necessary con-
dition for this execution strategy is that the variable in question (i.e., ?v) is guaranteed
to be bound in every possible solution mapping obtained from the other subqueries.

To allow for an automated verification of this condition we adopt Buil-Aranda et
al.’s notion of strongly bound variables [4]. To this end, for any SPARQL graph pat-
tern P , let sbvars(P) denote the set of strongly bound variables in P as defined by
Buil-Aranda et al. [4]. For the sake of space, we do not repeat the definition here. How-
ever, we emphasize that sbvars(P) can be constructed recursively, and each variable in
sbvars(P) is guaranteed to be bound in every possible solution for P [4, Proposition 1].
To carry over these properties to LDQL queries, we use the notion of strongly bound
variables in SPARQL patterns to define the following notion of strongly bound variables
in LDQL queries; thereafter, in Lemma 3, we show the desired boundedness guarantee.

Definition 7. The set of strongly bound variables in an LDQL query q, denoted by
sbvars(q), is defined recursively as follows:

1. If q is of the form 〈lpe, P 〉, then sbvars(q) = sbvars(P).
2. If q is of the form (q1 AND q2), then sbvars(q) = sbvars(q1) ∪ sbvars(q2).
3. If q is of the form (q1 UNION q2), then sbvars(q) = sbvars(q1) ∩ sbvars(q2).
4. If q is of the form πV q

′, then sbvars(q) = sbvars(q′) ∩ V .
5. If q is of the form (SEED U q′), then sbvars(q) = sbvars(q′).
6. If q is of the form (SEED ?v q′), then sbvars(q) = sbvars(q′) ∪ {?v}.

Lemma 3. Let q be an LDQL query. For every finite set S of URIs, every Web of Linked
Data W, and every solution mapping µ ∈ [[q]]SW , it holds that sbvars(q) ⊆ dom(µ).

We are now ready to show the following result.

Theorem 7. An LDQL query of the form (q1 AND q2 AND ... AND qm) is Web-safe if there
exists a total order ≺ over the set of subqueries {q1, q2, ... , qm} such that for each
subquery qi (1 ≤ i ≤ m), it holds that either (i) qi is Web-safe or (ii) qi is of the
form (SEED ?v q) where q is Web-safe and ?v ∈

⋃
qj≺qi sbvars(qj).

Proof (Sketch). We prove Theorem 7 based on an iterative algorithm that generalizes
the execution of query q′′ex as outlined in Example 6. That is, the algorithm executes the
subqueries q1 ... qm sequentially in the order ≺ such that each iteration executes one of
the subqueries by using the solution mappings computed during the previous iteration.

With the results in this section we have all ingredients to devise a procedure to
show Web-safeness for a large number of queries (including queries that are arbitrar-
ily nested). However, as a potential limitation of such a procedure we note that The-
orem 7 can be applied only in cases in which all non-Web-safe subqueries are of the
form (SEED ?v q). For instance, the theorem cannot be applied to show that an LDQL
query of the form

(
q1 AND (q2 UNION (SEED ?x q3))

)
is Web-safe if ?x ∈ sbvars(q1) and

q1, q2 and q3 are Web-safe. On the other hand, for the semantically equivalent query(
(q1 AND q2) UNION (q1 AND (SEED ?x q3))

)
we can show Web-safeness based on Theo-

rem 7 (and Proposition 2). Fortunately, we may leverage the following fact to improve
the effectiveness of applying Theorem 7 in the procedure that we aim to devise.

Fact 1. If an LDQL query q is Web-safe, then so is any LDQL query q′ with q′ ≡ q.

As a consequence of Fact 1, we may use the equivalences in Lemma 2 to rewrite
a given query into an equivalent query that is more suitable for testing Web-safeness
based on our results. To this end, we introduce specific normal forms for LDQL queries:

Definition 8. An LDQL query is in UNION-free normal form if it is of the form
(q1 AND ... AND qm) with m ≥ 1 and each qi (1 ≤ i ≤ m) is either (i) a basic LDQL
query or (ii) of the form πV q, (SEED U q) or (SEED ?v q) such that subquery q is in
UNION-free normal form. An LDQL query is in UNION normal form if it is of the form
(q1 UNION ... UNION qn) with n≥1 and each qi (1≤ i≤n) is in UNION-free normal form.

The following result is an immediate consequence of Lemma 2.

Corollary 1. Every LDQL query is equivalent to an LDQL query in UNION normal form.

In conjunction with Fact 1, Corollary 1 allows us to focus on LDQL queries in UNION

normal form without losing generality. We are now ready to specify our procedure that
applies the results in this paper to test a given LDQL query q for Web-safeness: First,
by using the equivalences in Lemma 2, the query has to be rewritten into a semanti-
cally equivalent LDQL query qnf =(q1 UNION ... UNION qn) that is in UNION normal form.
Next, the following test has to be repeated for every subquery qi (1 ≤ i ≤ n); recall that
each of these subqueries is in UNION-free normal form; i.e., qi = (qi1 AND ... AND qimi

).
The test is to find an order for their subqueries qi1, ... , q

i
mi

that satisfies the conditions
in Theorem 7. Every top-level subquery qi (1 ≤ i ≤ n) for which such an order exists,
is Web-safe (cf. Theorem 7). If all top-level subqueries are identified to be Web-safe by
this test, then qnf is Web-safe (cf. Proposition 2), and so is q (cf. Fact 1).

The given conditions are sufficient to show Web-safeness of LDQL. It remains open
whether there exists a (decidable) sufficient and necessary condition for Web-safeness.

6 Concluding Remarks and Future Work
LDQL, the query language that we introduce in this paper, allows users to express
queries over Linked Data on the WWW. We defined LDQL such that navigational fea-
tures for selecting the query-relevant documents on the Web are separate from patterns
that are meant to be evaluated over the data in the selected documents. This separation
distinguishes LDQL from other approaches to express queries over Linked Data.

We focused on expressiveness, by comparing LDQL with previous formalisms, and
on the notion of Web-safeness. Several topics remain open for future work. One of
them is the complexity of query evaluation. A classical complexity analysis is easy to
perform if we assume that all the data and documents are available as if they were in a
centralized repository, and that they can be processed via a RAM machine model. We
conjecture that under this model, the data complexity of evaluating LDQL will be poly-
nomial. Nevertheless, a more interesting complexity analysis should consider a model
that captures the inherent way of accessing the Web of Linked Data via HTTP requests,
the overhead of data communication and transfer, the distribution of data and docu-
ments, etc. A more practical direction for future research on LDQL is the development
of approaches to actually implement LDQL queries efficiently.

Acknowledgements Pérez is supported by the Millennium Nucleus Center for Seman-
tic Web Research, Grant NC120004, and Fondecyt grant 1140790.

References
1. Arenas, M., Conca, S., Pérez, J.: Counting beyond a yottabyte, or how SPARQL 1.1 property

paths will prevent adoption of the standard. In: WWW 2012. pp. 629–638 (2012)
2. Arenas, M., Gutierrez, C., Pérez, J.: On the Semantics of SPARQL. In: Semantic Web Infor-

mation Management - A Model-Based Perspective, chap. 13, pp. 281–307. Springer (2009)
3. Berners-Lee, T.: Linked Data. At http://www.w3.org/DesignIssues/LinkedData.html (2006)
4. Buil-Aranda, C., Arenas, M., Corcho, O.: Semantics and Optimization of the SPARQL 1.1

Federation Extension. In: Proc. 8th Extended Semantic Web Conf. (2011)
5. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax. W3C Rec-

ommendation (Feb 2014)
6. Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P.J., Berners-Lee, T.:

Hypertext Transfer Protocol – HTTP/1.1 (Jun 1999)
7. Fionda, V., Pirrò, G., Gutierrez, C.: NautiLOD: A Formal Language for the Web of Data

Graph. ACM Transactions on the Web 9(1), 5:1–5:43 (2015)
8. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language. W3C Recom-

mendation (Mar 2013)
9. Harth, A., Speiser, S.: On Completeness Classes for Query Evaluation on Linked Data. In:

Proc. 26th AAAI Conf. (2012)
10. Hartig, O.: LDQL: A Language for Linked Data Queries. In AMW 2015
11. Hartig, O.: SPARQL for a Web of Linked Data: Semantics and Computability. In: Proc. 9th

Extended Semantic Web Conf. (2012)
12. Hartig, O.: An Overview on Execution Strategies for Linked Data Queries. Datenbank-

Spektrum 13(2) (2013)
13. Hartig, O., Pérez, J.: LDQL: A Query Language for the Web of Linked Data (Extended

Version). CoRR abs/1507.04614 (2015), http://arxiv.org/abs/1507.04614
14. Hartig, O., Pirrò, G.: A Context-Based Semantics for SPARQL Property Paths over the Web.

In: Proc. 12th Extended Semantic Web Conf. (2015)
15. Mendelzon, A. O., Mihaila, G. A., Milo T.: Querying the World Wide Web. In: PDIS (1996)
16. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM Transac-

tions on Database Systems 34 (2009)
17. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A Navigational Language for RDF. J. Web

Sem. 8(4), 255–270 (2010)
18. Umbrich, J., Hogan, A., Polleres, A., Decker, S.: Link Traversal Querying for a Diverse Web

of Data. Semantic Web Journal (2014)

	LDQL: A Query Language for the Web of Linked Data
	Introduction
	Data Model
	Definition of LDQL
	Link Patterns
	LDQL Queries
	Algebraic Properties of LDQL Queries

	Comparison with Previous Linked Data Query Formalisms
	Comparison with Property Paths under Context-Based Query Semantics
	Comparison with NautiLOD
	Comparison with SPARQL under Reachability-Based Query Semantics

	Web-Safeness of LDQL Queries
	Concluding Remarks and Future Work

