
Chapter 8

Linked Data Query Processing

based on Link Traversal

Olaf Hartig

University of Waterloo
David R. Cheriton School of Computer Science
Waterloo, ON, Canada

8.1 Introduction . 49
8.2 Theoretical Foundations . 52

8.2.1 Data Model . 52
8.2.2 Full-Web Semantics for SPARQL . 53

8.3 Principles and Characteristics of LTBQE . 54
8.3.1 Live Exploration . 56
8.3.2 Integrated Execution . 57
8.3.3 Combining Live Exploration and Integrated Execution 57

8.4 An Iterator Based Implementation . 59
8.4.1 Introduction to the Implementation Approach 59
8.4.2 Characteristics of the Implementation Approach 62
8.4.3 Selecting Query Plans for the Approach . 64
8.4.4 Improving Performance of the Approach . 67
8.4.5 Alternative Implementation Approaches . 68

8.5 Summary . 69

8.1 Introduction

The execution of SPARQL queries over Linked Data readily available from
a large number of sources provides enormous potential. Consider, for instance,
the following SPARQL query which asks for the phone number of people who
authored an ontology engineering related paper at the European Semantic
Web Conference 2009 (ESWC’09). This query cannot be answered from a
single dataset but requires data from a large number of sources on the Web.
For instance, the list of papers and their topics (cf. lines 2 to 4) is part of the
Semantic Web Conference Corpus1; the names of the paper topics (cf. line 5)
are provided by the sources authoritative for the URIs used to represent the
topics; the phone numbers (cf. line 11) are provided by the authors (e.g., in

1http://data.semanticweb.org

49

50 Linked Data Management: Principles and Techniques

their FOAF profiles). Hence, this kind of queries can only be answered using
an approach for executing queries over Linked Data from multiple sources.

✞ ☎
1 SELECT DISTINCT ?author ?phone WHERE {

2 <http://data.semanticweb.org/conference/eswc/2009/proceedings>

3 swc:hasPart ?pub .

4 ?pub swc:hasTopic ?topic .

5 ?topic rdfs:label ?topicLabel .

6 FILTER regex(str(?topicLabel), "ontology engineering", "i") .

7

8 ?pub swrc:author ?author .

9 {?author owl:sameAs ?authAlt} UNION {?authAlt owl:sameAs ?author}

10

11 ?authAlt foaf:phone ?phone }

✌✝ ✆

An approach that enables the execution of such queries is to populate a
centralized repository similar to the collection of Web documents managed by
search engines for the Web. The database management systems for RDF data
discussed in previous chapters of this book provide a basis for this approach.By
using such a centralized repository it is possible to provide almost instant
query results. This capability comes at the cost of setting up and maintaining
the repository. Furthermore, users of such an interface for querying Linked
Data are restricted to the portion of the Web of Data that has been copied
into the repository. For instance, if we aim to answer our example query
using a repository that lacks, e.g., some authors’ FOAF profiles (or the most
recent version thereof), we may get an answer that is incomplete (or outdated)
w.r.t. all Linked Data available on the Web.

In this chapter we adopt an alternative view on querying Linked Data [35].
We conceive the Web of Data as a distributed database system. Querying the
Web of Data itself opens possibilities not conceivable before; it enables users
to benefit from a virtually unbounded set of up-to-date data.

However, the Web of Data is different from traditional distributed database
systems: Usually, the latter assume data-local query processing functionality.
Although the SPARQL protocol presents a commonly accepted standard for
exposing such a functionality, we cannot generally assume that all publishers
provide a SPARQL endpoint for their datasets. In contrast, while the Linked
Data principles present a simple publishing method that can be easily added
to existing workflows for generating HTML pages2, providing and maintaining
a (reliable) SPARQL endpoint presents a significant additional effort that not
all publishers are willing (or able) to make. For instance, not many people
expose their FOAF profile via a SPARQL endpoint (which renders a query
execution approach that relies on such endpoints unsuitable for our example
query). Therefore, in this chapter we understand a Linked Data query as a
query that ranges over data that can be accessed by dereferencing URIs (a

2Using the RDFa standard, Linked Data can even be embedded in HTML documents [1],
allowing publishers to serve a single type of document for human and machine consumption.

Linked Data Query Processing based on Link Traversal 51

formal definition follows shortly). Consequently, Linked Data query execution
relies solely on the Linked Data principles as introduced in Section 1.6.2.

Further distinguishing characteristics of the Web of Data are its unbounded
nature and the lack of a complete database catalog. Due to these character-
istics it is impossible to know all data sources that might contribute to the
answer of a query. In this context, traditional query execution paradigms are
insufficient because those assume that the query execution system (or the user)
has information about the existence of any potentially relevant data source.

In this chapter we introduce a novel query execution paradigm that is
tailored to the Web of Data. The general idea of this approach, which we call
link traversal based query execution (or LTBQE for short), is to intertwine
the construction of query results with the traversal of data links in order to
discover data that might be relevant to answer the query.

Example 12. A link traversal based query execution of our example query
may start with some data retrieved from the Semantic Web Conference Cor-
pus by dereferencing the URI that identifies the ESWC’09 proceedings. This
data contains a set of RDF triples that match the triple pattern in lines 2
and 3 of the query. The query engine generates a set of solution mappings
from this set. Each of these solution mappings binds query variable ?pub to
the URI representing one of the papers in the ESWC’09 proceedings. Deref-
erencing these URIs yields Linked Data about the papers including the topics
of the publications. Hence, in this newly retrieved data the query engine finds
matching triples for the pattern at line 4 with the given ?pub binding. Based
on these matches previously generated solution mappings can be augmented
with bindings for variable ?topic. Since the topics are also denoted by URIs,
additional data can be retrieved to generate bindings for ?topicLabel. The
query engine proceeds with the outlined strategy to eventually determine solu-
tion mappings that cover the whole query pattern and, thus, can be reported
as solutions of the query result.

The remainder of this chapter is organized as follows: As a theoretical
foundation we first introduce a well-defined query semantics that allows us
to use SPARQL as a query language for Linked Data queries. Thereafter, we
introduce the core principles of the LTBQE paradigm and discuss merits and
limitations of these principles. Finally, we focus on a particular example of
an implementation of the LTBQE paradigm, for which we provide a more
detailed discussion. This approach applies the well-known iterator model to
implement the LTBQE paradigm.

52 Linked Data Management: Principles and Techniques

8.2 Theoretical Foundations

To define Linked Data query execution approaches, discuss their respective
merits and limitations, and compare them, in a meaningful way, we need a
precise definition of what the supported queries are and what the expected
results for such queries are. Hence, we need a well-defined query semantics.

In this chapter we focus on queries expressed using SPARQL. However,
the original semantics of this query language assumes queries over a-priory
defined sets of RDF triples (recall the definitions in Section 1.5.3 of the first
chapter in this book). Hence, to use SPARQL as a language for queries over
Linked Data on the Web we have to adjust the semantics by redefining the
scope for evaluating SPARQL expressions. As a basis for such an adjustment
we need a data model that formally captures the concept of a Web of Data.
In this section we introduce these theoretical foundations. For simplicity, we
assume a static view of the Web; that is, no changes are made to the data on
the Web during the execution of a query.

8.2.1 Data Model

We represent a Web of Data3 as a set of abstract symbols that is accom-
panied by two mappings. We call these symbols LD documents and use them
to formally capture the concept of Web documents that can be obtained by
dereferencing URIs according to the Linked Data principles. Consequently,
the two accompanying mappings model the fact that we may obtain an RDF
graph from such a document and that we may retrieve such documents by
dereferencing URIs. Then, the definition of a Web of Data is given as follows:

Definition 15. Let U be the set of all URIs (per Definition 1 in Chapter 1)
and let T be the set of all RDF triples (per Definition 1 in Chapter 1). A Web

of Data is a tuple W = (D, data, adoc) where D is a set of LD documents;
data is a total mapping: D → 2T such that data(d) is finite for all d ∈ D; and
adoc is a partial, surjective mapping: U → D.

Given a Web of Data W = (D, data, adoc) we say that an LD document
d ∈ D describes the resource identified by a URI u ∈ U if there exists an RDF
triple t = (s, p, o) such that i) s = u or o = u and ii) this triple t is contained in
the RDF graph that can be obtained from LD document d; i.e., t ∈ data(d).
Clearly, for any URI u ∈ U there might be multiple LD documents in D
that describe the resource identified by u. Moreover, in practice some HTTP
URIs can be dereferenced to retrieve what may be understood as authoritative

3In this chapter we overload the term “Web of Data” to homonymously refer to the
mathematical structure that we define as well as to the World Wide Web which presents an
actual implementation of such a structure. Nonetheless, it should be clear from the context
which meaning each use of the term refers to.

Linked Data Query Processing based on Link Traversal 53

documents for these URIs. Mapping adoc captures this relationship. Note that
this mapping is intentionally not required to be injective because dereferencing
different URIs may result in the retrieval of the same document. On the other
hand, not all URIs can be dereferenced; hence, mapping adoc is not total.

We can now define the notion of a Linked Data query formally:

Definition 16. A Linked Data query Q is a total function over the set of
all possible Webs of Data (i.e., all 3-tuples that satisfy Definition 15).

Note that this definition of Linked Data queries is intentionally general;
this generality allows for queries expressed in different query languages, differ-
ent query semantics, and different types of query results.4 In this chapter, we
focus on SPARQL based Linked Data queries, that are, Linked Data queries
(per Definition 16) that have the following two properties:

1. These queries are expressed using a SPARQL query pattern (per Defi-
nition 12 in Chapter 1); and

2. any query result for such a query must be a set of SPARQL solution
mappings (per Definition 8 in Chapter 1); more precisely, the codomain
of these queries is 2M where M denotes the infinite set of all possible
solution mappings.

8.2.2 Full-Web Semantics for SPARQL

We now introduce query semantics for SPARQL based Linked Data que-
ries. To this end, we adapt the usual SPARQL semantics from Chapter 1 such
that SPARQL query patterns can be used as Linked Data queries. The most
straightforward approach for such an adaptation is to assume a SPARQL data-
set whose default graph consists of all RDF triples that exist in the queried
Web of Data. Hereafter, we refer to this adaptation as full-Web semantics and
call the resulting SPARQL based Linked Data queries SPARQLLD queries.

To define these queries formally we denote the set of all RDF triples in a
Web of Data W = (D, data, adoc) by AllData(W); thus, it holds that:5

AllData(W) =
⊎

d∈D

data(d) .

Then, defining SPARQLLD queries is trivial and makes use of SPARQL query
patterns, their execution function (per Definition 14; cf. Chapter 1), and the
concept of a SPARQL dataset6 (see Definition 6):

4An alternative to expressing Linked Data queries using SPARQL is the Linked Data
query language NautiLOD as introduced in the following chapter. Query results in the case
of NautiLOD are sets of URIs.

5Recall that the operator ⊎ denotes an RDF merge (see Definition 4 in Chapter 1).
6In this chapter we denote SPARQL datasets by DS because the symbol D is already

reserved for the set of LD documents in a Web of Data.

54 Linked Data Management: Principles and Techniques

Definition 17. The SPARQLLD query that uses SPARQL query pattern
P , denoted by QP, is a Linked Data query that, for any Web of Data W, is
defined by QP (W) := [[P]]DS where DS =

{

AllData(W)
}

.

To define a query semantics for Linked Data queries we may assume com-
plete knowledge of the three elements that capture a queried Web formally
(i.e., D, data, and adoc). An actual system that accesses an implementation
of a Web of Data such as the WWW cannot have such knowledge. In con-
trast, to such a system the Web appears as an unbounded space: Without
complete access to mapping adoc –in particular, dom(adoc)– potentially any
HTTP URI may allow the system to retrieve Linked Data. However, the set
of such URIs is infinite and, thus, the system would have to spend an infi-
nite number of computation steps dereferencing all these URIs in order to
guarantee that it has seen all of dom(adoc) and, thus, disclosed mapping adoc
completely. Even if, at some point during this process, the system would –by
chance– have dereferenced all URIs u ∈ dom(adoc), it cannot know that this
is the case. Therefore, in practice we cannot assume to ever have a complete
list of all URIs based on which we would retrieve all Linked Data (even under
our assumption that the Web of Data is static). Consequently, we also cannot
assume that any system ever has access to all Linked Data that is or was
(openly) available on the WWW at a certain point in time.

As a consequence of these limited data access capabilities not any approach
for executing SPARQLLD queries over a Web of Data such as the WWW can
guarantee complete query results. While a formal verification of this limitation
is out of the scope of this chapter, we refer to Hartig’s analysis [34]. The
author introduces an abstract computation model that formally captures the
data access capabilities of systems that aim to compute functions over a Web
of Data such as the WWW. Based on this model the author formally analyzes
feasibility and limitations of computing SPARQL based Linked Data queries.
For full-Web semantics this analysis shows that there does not exist a single
satisfiable SPARQLLD query for which there exists a sound and complete
computation that terminates after a finite number of computation steps.

We emphasize, however, that instead of the presented full-Web semantics
a SPARQL based Linked Data query may also be interpreted under an al-
ternative, more restrictive query semantics. Several such semantics have been
proposed [13, 31, 34], each of which restricts the range of Linked Data queries
to a well-defined part of the queried Web of Data. Examples are query seman-
tics that use a certain notion of navigational reachability to specify what part
of a queried Web of Data needs to be considered for a given query. For a par-
ticular family of such reachability based semantics computational properties
have been studied in the aforementioned analysis [34].

Due to space constraints we do not discuss any of these alternative query
semantics here. Instead, for the purpose of introducing link traversal based
query execution in the following sections, we assume full-Web semantics (with
the caveat that completeness of query results cannot be guaranteed).

Linked Data Query Processing based on Link Traversal 55

8.3 Principles and Characteristics of LTBQE

Link traversal based query execution (LTBQE) is a novel query execution
paradigm tailored for Linked Data queries. In this section we discuss the
following three core principles that are characteristic of any LTBQE approach:

Live exploration based data retrieval: For the execution of Linked Data
queries it is necessary to retrieve data by dereferencing URIs. Conse-
quently, any approach for executing Linked Data queries needs to pre-
scribe a strategy for selecting those URIs that the query execution sys-
tem dereferences during the execution of a given query. The strategy
adopted by LTBQE is to explore the queried Web of Data by traversing
data links at query execution time. More precisely, as an integral part of
executing a Linked Data query, an LTBQE system performs a recursive
URI lookup process. The starting point for this process is a set of seed
URIs; these seed URIs may be the URIs mentioned in the given query,
or they are specified as an accompanying parameter for the query. While
the data retrieved during such a recursive live exploration process allows
for a discovery of more URIs to look up, it also provides the basis for
constructing the query result.7 (A different strategy to retrieve data for
executing Linked Data queries is to dereference a set of URIs selected
from a pre-populated index. A discussion of this strategy can be found
in Chapter ?? of this book.)

A live exploration based system may not need to dereference all URIs
discovered. Instead, certain live exploration approaches may (directly
or indirectly) introduce criteria to decide which of the discovered URIs
are scheduled for lookup. For instance, approaches designed to support
one of the more restrictive query semantics (mentioned in Section 8.2.2),
may ignore any URI whose lookup exceeds the part of the Web that is
relevant according to the semantics.

Integration of data retrieval and result construction: The actual pro-
cess of executing a Linked Data query may consist of two separate
phases: During the first phase a query execution system selects URIs
and uses them to retrieve data from the queried Web; during a sub-
sequent, second phase the system generates the query result using the
data retrieved in the first phase. Instead of separating these two phases,
a fundamental principle of LTBQE is to integrate the retrieval of data
into the result construction process.

Combining live exploration and integrated execution: We emphasize
that the design decision to integrate data retrieval and result construc-
tion is orthogonal to deciding what data retrieval strategy to use for

7To avoid blank-node label conflicts the query engine must ensure that distinct blank-
node labels are used for each RDF graph discovered during the live exploration process.

56 Linked Data Management: Principles and Techniques

such an integrated execution. Consequently, the combination of live ex-
ploration based data retrieval with the idea of an integrated execution
is what ultimately characterizes the LTBQE paradigm.

In the following we first discuss separately the merits and the limitations
of live exploration and of an integrated execution. Afterwards, we elaborate
on how these ideas can be combined into an LTBQE strategy.

8.3.1 Live Exploration

The most important characteristic of live exploration based data retrieval
is the possibility to use data from initially unknown data sources. This charac-
teristic allows for serendipitous discovery and, thus, enables applications that
tap the full potential of Linked Data on the WWW.

Another characteristic is that a live exploration based query execution sys-
tem does not require any a-priori information about the queried Web of Data.
Consequently, such a system might readily be used without having to wait for
the completion of an initial data load phase or any other type of preprocess-
ing. Hence, this characteristic makes live exploration based approaches (and,
thus, LTBQE) most suitable for an “on-demand” querying scenario.

On the downside, it is inherent in the recursive URI lookup process that
access times for data add up. Possibilities for parallelizing data retrieval are
limited because relevant URIs only become available incrementally. Moreover,
the recursive URI lookup process may not even terminate at all if we assume
the queried Web of Data is infinitely large due to data generating servers [34].

Another limitation of live exploration based data retrieval is its depen-
dency on the structure of the network of data links as well as on the number
of links. In a Web sparsely populated with links chances are low to discover
relevant data. While such a limitation is not an issue for queries under the
aforementioned reachability based query semantics (cf. Section 8.2.2), systems
that aim to support full-Web semantics may report more complete results for
certain queries if they use another data retrieval strategy. For instance, a sys-
tem that uses the index based strategy discussed in Chapter ?? may be able to
compute some solutions of a query result that a live exploration based system
cannot compute; this is the case if some data necessary for computing these
solutions cannot be discovered by link traversal. On the other hand, a live ex-
ploration based system may discover URIs that are not mentioned in the index
based system’s index; the data retrieved by dereferencing these URIs may al-
low the live exploration based system to compute certain query solutions that
the index based system cannot compute. Hence, a general statement about the
superiority of the live exploration strategy over the index based strategy (or
vice versa) w.r.t. result completeness is not possible in the context of full-Web
semantics.

In its purest form, the live exploration strategy assumes query execution
systems that do not have any a-priori information about the Web of Data

Linked Data Query Processing based on Link Traversal 57

and begin each query execution with an empty query-local dataset. It is also
possible, however, that a query execution system uses the query-local dataset
that it populated during the execution of a query as a basis for executing sub-
sequent queries. Such a reuse can be beneficial for two reasons [32]: 1) it can
improve query performance because it reduces the need to retrieve data mul-
tiple times; 2) assuming full-Web semantics, it can provide for more complete
query results, calculated based on data from data sources that would not be
discovered by a live exploration with an initially empty query-local dataset.
However, since reusing the query-local dataset for the execution of multiple
queries is a form of data caching, it requires suitable caching strategies. In
particular, any system that keeps previously retrieved data has to apply an
appropriate invalidation strategy; otherwise it could lose the advantage of up-
to-date query results. As an alternative to caching retrieved data it is also
possible to only keep a summary of the data or certain statistics about it.
Such information may then be used to guide the execution of later queries (as
in the case of index based source selection discussed in Chapter ??).

8.3.2 Integrated Execution

The idea to intertwine the retrieval of data and the construction of query
results may allow a query execution system to report first solutions for a
(monotonic) query early, that is, before data retrieval has been completed.

Furthermore, this integrated execution strategy may be implemented in
a way that requires significantly less query-local memory than any approach
that separates data retrieval and result construction into two, consecutive
phases; this may hold in particular for implementations that process retrieved
data in a streaming manner and, thus, do not require to store all retrieved
data until the end of a query execution process. For instance, Ladwig and
Tran introduce such an implementation approach for LTBQE [49, 50].

8.3.3 Combining Live Exploration and Integrated Execution

While the two, previously discussed strategies, live exploration and inte-
grated execution, should be understood as independent principles for designing
a Linked Data query execution approach, they almost naturally fit together.
Combining these two principles is what characterizes the LTBQE paradigm.
Different approaches for such a combination have recently been studied in the
literature; a manifold of other approaches is possible. In the remainder of this
section we provide an overview on such approaches. In particular, we first out-
line a naive example of an LTBQE approach in order to illustrate the idea of
combining live exploration based data retrieval with the integrated execution
strategy. Thereafter, we refer to particular LTBQE approaches proposed in
the literature.

Using a set of seed URIs as a starting point, a query execution system may
alternate between two types of execution stages, that are, link traversal stages

58 Linked Data Management: Principles and Techniques

and result computation stages. Each link traversal stage consists of derefer-
encing URIs that the system finds in the data retrieved during the previous
link traversal stage. During the result computation stage that follows such a
link traversal stage the system generates a temporary, potentially incomplete
query result using all data retrieved so far; from such a result the system re-
ports those solutions that did not appear in the result generated during the
previous result computation stage. Hence, the system incrementally explores
the queried Web of Data in a breadth-first manner and produces more and
more solutions of the query result during that process.

It is easy to see that such a naive, breadth-first LTBQE approach is unsuit-
able in practice because completely recomputing a partial query result during
each result computation stage is not efficient. Schmedding proposes a version
of the naive approach that addresses this problem [65]. The idea of Schmed-
ding’s approach is to recursively adjust the currently computed query result
each time the execution system retrieves additional data. Schmedding’s main
contribution is an extension of the SPARQL algebra operators that makes the
differences between query results computed on different input data explicit;
based on the extended algebra, each result computation stage computes the
next version of the temporary query result by using only i) the additionally
retrieved data and ii) the previously computed version of the result (instead
of recomputing everything from scratch as in the naive approach).

By abandoning the idea of using the aforementioned stages as a basis for
LTBQE approaches, it becomes possible to achieve an even tighter integration
of link traversal and result construction: Instead of performing multiple result
computation stages that always compute a whole query result (from scratch
as in a the naive approach or incrementally as proposed by Schmedding),
Hartig et al. introduce an LTBQE approach that consists of a single result
construction process only [36, 33, 37]; this process computes the solutions
of a query result by incrementally augmenting intermediate solutions such
that these intermediate solutions cover more and more triple patterns of the
query. For such an augmentation the process uses matching triples from data
retrieved via link traversal. At the same time, the process uses the URIs in
these matching triples for further link traversal. Hence, this approach does
not follow arbitrary links in the discovered data but only those links that
correspond to triple patterns in the executed query.

We emphasize that LTBQE as described by Hartig et al. presents a general
strategy rather than a concrete, implementable algorithm. In a more recent
publication Hartig and Freytag provide a formal, implementation independent
definition of this LTBQE strategy and use this definition to formally analyze
the strategy [37]. A variety of approaches for implementing this strategy are
conceivable. In the following section we focus on a particular example of these
approaches that uses a synchronized pipeline of iterators.

Linked Data Query Processing based on Link Traversal 59

8.4 An Iterator Based Implementation

To build a query execution system that applies the general idea of the
LTBQE paradigm, we require a concrete approach for implementing LTBQE.
As an example for such an implementation this section discusses an application
of the well-known iterator model [25]. We first introduce this implementation
approach and describe its characteristics. Then, we discuss the problem of
determining query execution plans for this approach and, finally, introduce
an optimization that reduces the impact of data access times on the overall
query execution times. For the sake of brevity, we only consider SPARQL
based Linked Data queries that are expressed using a basic graph pattern
(BGP).8 Since these queries present a form of conjunctive queries, we call
them conjunctive Linked Data queries (or CLD queries for short).

8.4.1 Introduction to the Implementation Approach

A basis for query execution –in general– is a query execution plan that rep-
resents the given query as a tree of operations. A well established approach to
execute such a plan is pipelining in which each solution produced by one oper-
ation is passed directly to the operation that uses it [19]. The main advantage
of pipelining is the rather small amount of memory that is needed compared
to approaches that completely materialize intermediate results. Pipelining in
query engines is typically implemented by a tree of iterators, each of which
performs a particular operation [25]. An iterator is a group of three functions:
Open, GetNext, and Close. Open initializes the data structures needed to per-
form the operation; GetNext returns the next result of the operation; and
Close ends the iteration and releases allocated resources. In a tree of iterators
the GetNext functions of an iterator typically call GetNext on the child(ren)
of the iterator. Hence, a tree of iterators computes solutions in a pull fashion.

To use iterators for executing a CLD query in a link traversal based man-
ner we assume a logical execution plan that specifies an order for the triple
patterns of the query. Selecting such a plan is an optimization problem that we
discuss in Section 8.4.3. The physical implementation of such a logical plan
is a sequence of iterators I0, I1, ... , In such that the i-th iterator Ii (where
i ∈ {1, ... , n} and n is the number of triple patterns in the query) is responsible
for the i-th triple pattern (as given by the selected order). Iterator I0 is a spe-
cial iterator; its Open function dereferences all seed URIs of the query and uses
the retrieved data to initialize a query-local dataset. The GetNext function of
iterator I0 provides a single empty solution mapping µ∅ (i.e., dom(µ∅) = ∅).

8An extension of the presented concepts to support more complex types of SPARQL
query patterns is straightforward (as long as the supported queries are monotonic). Alter-
natively, the solutions for each BGP based subquery that might be computed using LTBQE,
may be processed by the SPARQL algebra as usual.

60 Linked Data Management: Principles and Techniques

Algorithm 1 Functions of an iterator used for implementing LTBQE.

Require: tp – a triple pattern
Ipred – a predecessor iterator
D – the query-local dataset (note, all iterators have access to D)

FUNCTION Open

1: Ipred.Open // initialize the input iterator

2: Ωtmp := ∅ // for storing (precomputed) solution mappings temporarily

FUNCTION GetNext

3: while Ωtmp = ∅ do

4: µinput := Ipred.GetNext // consume partial solution from direct predecessor

5: if µinput = EndOfFile then return EndOfFile end if

6: tp′ := µinput(tp)
7: Ensure that each URI u ∈ uris(tp′) has been dereferenced and all re-

trieved data is available as part of the query-local dataset D.

8: Gsnap := all RDF triples in the current version of D
9: Ωtmp :=

{

µinput ∪ µ′
∣

∣ dom(µ′) = vars(tp′) and µ′(tp′) ∈ Gsnap

}

10: end while

11: µ := an element in Ωtmp

12: Ωtmp := Ωtmp \ {µ}
13: return µ

FUNCTION Close

14: Ipred.Close // close the input iterator

We refer to each of the other iterators, I1 to In, as a link traversing iterator.
Those implement the functions Open, GetNext, and Close as given in Listing 1.
We briefly describe the operation executed by the i-th link traversing iterator
iterator, Ii (where i ∈ {1, ... , n}). This iterator reports solution mappings
that cover the first i triple patterns. To produce these intermediate solutions
iterator Ii executes the following four steps repeatedly: First, the iterator
consumes a solution mapping µinput from its direct predecessor, iterator Ii−1,
and applies this mapping to its triple pattern tpi, resulting in a triple pattern
tp′i = µinput(tpi) (cf. lines 4 to 6 in Listing 1); second, the iterator ensures that
the query-local dataset contains all data that can be retrieved by dereferencing
all URIs mentioned in tp′i (cf. line 7); third, the iterator precomputes solution
mappings based on all matching triples for tp′i that are currently available in
the query-local dataset (cf. lines 8 and 9); and, fourth, Ii (iteratively) reports
each of the precomputed solution mappings (cf. lines 11 to 13).

Example 13. Let QBex be a CLD query (under full-Web semantics) where
Bex = {tp1, tp2} is a BGP consisting of triple patterns tp1 = (?x, ex:p1, ex:a)

Linked Data Query Processing based on Link Traversal 61

and tp2 = (?x, ex:p2, ?y). For a link traversal based execution of this query,
we assume a physical plan I0, I1, I2 where I0 is the root iterator and link
traversing iterators I1 and I2 are responsible for triple patterns tp1 and tp2,
respectively. The sequence diagram in Figure 8.1 illustrates an execution of
this plan over a Web of Data Wex = (Dex, dataex, adocex) with:

adocex(ex:a) = da, dataex(da) =
{

(ex:b, ex:p1, ex:a),

(ex:c, ex:p1, ex:a)
}

,

adocex(ex:b) = db, dataex(db) =
{

(ex:b, ex:p2, ex:d)
}

,

adocex(ex:c) = dc, dataex(dc) =
{

(ex:c, ex:p2, ex:d)
}

,

and dom(adocex) = { ex:a, ex:b, ex:c }.
As can be seen from the sequence diagram, the first execution of the

GetNext function of iterator I1 begins with consuming the empty solution
mapping µ∅ from root iterator I0. This solution mapping corresponds to µinput

in Listing 1 (cf. line 4). Based on µ∅, iterator I1 initializes triple pattern

FIGURE 8.1: Sequence diagram that illustrates the interaction between link
traversing iterators during a link traversal based query execution process.

62 Linked Data Management: Principles and Techniques

tp′1 = µ∅(tp1) and dereferences all URIs in tp′1. Note, tp′1 = tp1 because
dom(µ∅) = ∅. Thus, I1 dereferences two URIs, ex:p1 and ex:a, which, in
the case of the queried example Web Wex, results in adding dataex(da) to
the query-local dataset D. Then, I1 precomputes a set Ωtmp(1) of solutions
for triple pattern tp′1. Since, at this point, the query-local dataset D contains
two RDF triples that match tp′1, it holds that Ωtmp(1) = {µ(1,1), µ(1,2)} where
µ(1,1) = {?x → ex:b}, and µ(1,2) = {?x → ex:c}. After precomputing Ωtmp(1),
iterator I1 removes solution mapping µ(1,1) from this precomputed set and re-
turns that solution mapping as the first result of its operation.

Using µ(1,1) as input, iterator I2 initializes the temporary triple pattern
tp′2 = µ(1,1)(tp2) = (ex:b, ex:p2, ?y), dereferences all URIs in tp′2, and,
thus, adds dataex(db) to the query-local dataset D. Thereafter, I2 precom-
putes (a first version of) its set Ωtmp for tp′2. To denote this particular
version of Ωtmp we write Ω(2,1). Since one triple in the query-local dataset
matches tp′2 (namely, the triple that comes from LD document db), we have
Ω(2,1) = {µ(2,1)} with µ(2,1) = {?x → ex:b, ?y → ex:d}. It is easy to see that
µ(2,1) is a solution for BGP Bex. Iterator I2 concludes the first execution of
its GetNext function by reporting solution µ(2,1), after removing this solution
from Ωtmp. As a consequence, Ωtmp is empty when the query execution sys-
tem requests another solution from I2 (by calling the GetNext function of I2
a second time). Hence, at the begin of the second execution of GetNext, I2
consumes the next solution mapping from its predecessor I1.

In the remaining steps of the query execution, the iterators proceed as il-
lustrated in Figure 8.1 (where µ(2,2) = {?x → ex:c, ?y → ex:d}).

Notice, in contrast to iterators usually used for computing queries over
a fixed dataset, calling a link traversing iterator may have the side-effect of
an augmentation of the query-local dataset (as desired for an implementation
of the LTBQE paradigm). In particular, link traversing iterators augment the
query-local dataset based on the following solution discoverability assumption:
RDF triples that match a triple pattern are most likely to find in the data
that can be retrieved by dereferencing the URIs mentioned in the triple pat-
tern. Hence, the query-local availability of this data may improve chances to
increase the number of query solutions that can be reported. Such an assump-
tion is justified by the common practice of publishing Linked Data.

8.4.2 Characteristics of the Implementation Approach

We now discuss characteristics and limitations that are specific to the
presented approach of implementing LTBQE using a pipeline of iterators.

Most importantly, the implementation approach is sound, that is, any so-
lution mapping reported by the last iterator in the pipeline is in fact a solution
of the corresponding query result as specified in Definition 17 [37].9

9In fact, Hartig and Freytag show that the implementation approach is sound for
SPARQL based Linked Data queries under a more restrictive, reachability based query

Linked Data Query Processing based on Link Traversal 63

However, the approach cannot guarantee to compute all solutions that
may be computed using the final snapshot of the query-local dataset. As the
primary reason for this limitation we note that each link traversing iterator
discards an input solution mapping after using it. More precisely, any link
traversing iterator Ii uses each input solution mapping µinput only once to find
matching triples for triple pattern tp′i = µinput(tpi) (where tpi is the triple
pattern that iterator Ii is responsible for). As a consequence, iterator misses
those matching triples for tp′i that any of the iterators discovers and adds to
the query-local dataset after Ii made use of intermediate solution µinput.

Discarding intermediate solutions after using them may additionally cause
another, somewhat unexpected effect. That is, the order in which the triple
patterns of a query are assigned to the iterators (i.e., the logical query
plan) may influence which LD documents the iterators discover and, thus,
which solutions they report. The following example illustrates this effect:

✞ ☎
1 ?x rdf:type ex:X .

2 ?x ex:p1 ?y .

3 ?y rdfs:label ?z .

4 ?y ex:p2 ex:a .

✌✝ ✆

Example 14. To execute a CLD query QBex where
Bex is the BGP in the adjoining figure we may se-
lect a query plan that orders the triple patterns in
the same order in which they are listed in the figure.
During the execution of this plan, iterator I2 requests
a first intermediate solution from its predecessor I1. Iterator I1, which is re-
sponsible for the rdf:type triple pattern, ensures that the query-local dataset
contains the data that can be retrieved by dereferencing URIs rdf:type and
ex:X. For the sake of the example we assume that the queried Web is a Web
of Data Wex = (Dex, dataex, adocex) such that:

adocex(ex:X) = dX, dataex(dX) =
{

(ex:X, rdfs:subClassOf, ex:Y)
}

,

adocex(ex:a) = da, dataex(da) =
{

(ex:b, ex:p2, ex:a)
}

,

adocex(ex:b) = db, dataex(db) =
{

(ex:b, rdfs:label, "..."),

(ex:c, ex:p1, ex:b)
}

,

adocex(ex:c) = dc, dataex(dc) =
{

(ex:c, rdf:type, ex:X)
}

,

and dom(adocex) = { ex:X, ex:a, ex:b, ex:c }. Hence, when iterator I1 tries
to find matching triples for its triple pattern, the query-local dataset includes
only dataex(dX) (assuming that no other seed URIs have been specified for the
query). Apparently, dataex(dX) does not contain triples that match I1’s triple
pattern. Therefore, I1 cannot generate and report any intermediate solution
and, thus, the overall query result as computed based on the selected plan
is empty. Even if we assume a set of seed URIs that consists of all URIs
mentioned in BGP Bex, iterator I1 could still not find a matching triple for
the first triple pattern. However, an alternative query plan may use the reverse
order (i.e., in this plan iterator I1 would be responsible for the ex:p2 triple

semantics [37, Theorem 5]. Soundness for full-Web semantics follows trivially because any
query result under the reachability based semantics considered by Hartig and Freytag is a
subset of the corresponding query results under full-Web semantics [34, Proposition 3].

64 Linked Data Management: Principles and Techniques

pattern). By executing this plan we would obtain a solution given as follows:
µ =

{

(?x, ex:c), (?y, ex:b), (?z, "...")
}

.

As can be seen from the example, the iterator based implementation of
LTBQE may return different result sets for a CLD query depending on the
evaluation order selected for the triple patterns of the query. Such a behavior
can be explained based on the following two orthogonal phenomena:

Missing backlinks: On the traditional, hypertext Web it is unusual that
Web pages are linked bidirectionally. Similarly, for a Web of Data W =
(D, data, adoc) an RDF triple of the form (s, p, o) ∈ U×U×U contained
in data(adoc(s)) (respectively in data(adoc(o))) does not have to be
contained in data(adoc(o)) (respectively in data(adoc(s))). We speak
of a missing backlink. Due to missing backlinks it is possible that one
evaluation order allows for the discovery of a matching triple whereas
another order misses that triple. For instance, the reason for the different
results in Example 14 is a missing backlink in dataex(dX).

Serendipitous discovery: Based on the aforementioned solution discover-
ability assumption any link traversing iterator Ii enforces the derefer-
encing of certain URIs because the corresponding data may contain
matching triples for the triple pattern tp′i currently evaluated by the
iterator. However, even if dereferenced for the evaluation of a specific
triple pattern, the data retrieved using such a URI u∗ ∈ uris(tp′i) may
also contain an RDF triple t∗ that matches another triple pattern tp′j
which will be evaluated later by any of the iterators. Let us assume that
i) u∗ /∈ uris(tp′j) and ii) t∗ /∈ data(adoc(u)) for all URIs u ∈ uris(tp′j).
Then, RDF triple t∗ cannot be discovered by performing line 7 in List-
ing 1 for triple pattern tp′j . However, since t∗ has been discovered before,
it can be used for generating an additional solution mapping during the
evaluation of tp′j . We say that this solution mapping has been discovered
by serendipity. If the triple patterns of the query were ordered differ-
ently, t∗ may not be discovered before the evaluation of tp′j an, thus, the
serendipitously discovered solution mapping may not be generated.

The dependency of result completeness on the order in which the triple
patterns of a CLD query are evaluated by link traversing iterators implies that
certain orders are more suitable than others. In the following we discuss the
problem of selecting a suitable order.

8.4.3 Selecting Query Plans for the Approach

Selecting a logical query execution plan that specifies an order for the triple
patterns in a given CLD query is an optimization problem: Different plans
for the same query may exhibit different performance characteristics. These
differences may not only affect query execution times (and other, resource

Linked Data Query Processing based on Link Traversal 65

requirements oriented measures) but also result completeness, as we have seen
in the previous section. Consequently, we are interested in selecting a logical
query execution plan that has low cost (e.g., measured in terms of the overall
time for execution) as well as high benefit, measured as the number of solutions
that an execution of the plan returns.10

We emphasize that there is an inherent trade-off between cost and benefit:
A plan that is able to report more solutions may require more resources than
a plan that reports less solutions. In particular, such a highly beneficial plan
is likely to retrieve more data which would occupy more query-local memory
and would increase query execution times.

To rank and select query plans it is necessary to calculate (or estimate)
their cost and their benefit without executing them. Such a calculation re-
quires information about reachable data and the data sources involved in the
execution of a plan. However, such information is not available when we start
a link traversal based query execution. We just have a query and an empty
query-local dataset; we do not know anything about the LD documents we
will discover; we do not even know what LD documents will be discovered. As
a consequence of this complete lack of information the application of a cost
(and benefit) based ranking of plans is unsuitable in our scenario.

As an alternative we may use a heuristics based approach for plan selection.
In the following we specify four heuristic rules that may be used for such a
purpose. We also describe the rationale for each of these rules.

1. The Dependency Rule proposes to use a dependency respecting query
plan, that is, an order for the BGP of a given CLD query such that at
least one of the query variables in each triple pattern of the BGP occurs
in one of the preceding triple patterns. Formally, an ordered BGP11

B̄ = [tp1, ... , tpn] is dependency respecting if for each i ∈ {2, ... , n} there
exist a j < i and a query variable ?v ∈ vars(tpi) such that ?v ∈ vars(tpj).
It is easy to see that for each BGP that represents a connected graph12

it is always possible to find a dependency respecting query plan. For
BGPs that do not represent a connected graph (which are rarely used in
practice) at least each connected component should be ordered according
to the Dependency Rule.

Rationale: Dependency respecting query plans are a reasonable require-
ment because those enable each iterator to reuse some of the bindings in
each input solution mapping µinput consumed from their predecessor it-
erator. This strategy avoids what can be understood to be an equivalent
to the calculation of cartesian products in RDBMS query executions.

2. The Seed Rule proposes to use a plan in which the first triple pat-
tern contains as many HTTP URIs as possible. Formally, for the triple

10Another important dimension that we do not account for here is response time, that is,
query executions should report first solutions as early as possible.

11We represent ordered BGPs as lists, denoted by comma-separated elements in brackets.
12A BGP B represents a connected graph if for each pair of BGPs B1 and B2 with

B1 ∪B2 = B and B1 ∩B2 = ∅ it holds that ∃tpi ∈ B1, tpj ∈ B2 : vars(tpi) ∩ vars(tpj) 6= ∅.

66 Linked Data Management: Principles and Techniques

pattern tp1 ∈ B selected as first triple pattern in a plan for a CLD
query with BGP B it must hold that there does not exist another triple
pattern tpi ∈ B \ {tp1} such that |vars(tp1)| < |vars(tpi)|.

Rationale: During any query execution of a sequence I0, I1, ... , In of iter-
ators, iterator I1 (which is responsible for the first triple pattern in the
query) is the first iterator that generates solution mappings based on
matching triples in the query-local dataset. The remaining link travers-
ing iterators augment these solution mappings by adding bindings for
their query variables. Hence, we need to select a triple pattern for I1 such
that there is a high likelihood that the early snapshot of the query-local
dataset as used by I1 already contains matching triples for the selected,
first triple pattern. According to the aforementioned solution discover-
ability assumption (cf. Section 8.4.1), matching triples for a triple pat-
tern might be found, in particular, in RDF graphs that can be retrieved
by looking up the URIs that are part of this pattern. Therefore, it is
reasonable to select one of triple patterns with the maximum number of
mentioned HTTP URIs as the first triple pattern.

3. The Instance Seed Rule proposes to avoid query plans in which the
first triple pattern contains only URIs that denote vocabulary terms.
Such a triple pattern can be identified with high likelihood by a simple
syntactical analysis: Since URIs in the predicate position always denote
vocabulary terms, a preferred first triple pattern must contain an HTTP
URI in subject or object position. However, in triple patterns with a
predicate of rdf:type a URI in the object position identifies a class,
i.e., also a vocabulary term. Hence, these triple patterns should also be
avoided as first triple pattern.

Rationale: By narrowing down the set of candidate query plans using
the Instance Seed Rule we can expect to increase the average benefit
of the remaining set of plans. This expectation is based on the follow-
ing observation: URIs which identify vocabulary terms resolve to RDF
data that usually contains vocabulary definitions and very little or no
instance data. However, queries usually ask for instance data and do
not contain patterns that have to match vocabulary definitions. Hence,
it is reasonable to avoid a first triple pattern whose URIs are unlikely
to yield instance data as a starting point for query execution. Exam-
ple 14 illustrates the negative consequences of ignoring the Instance

Seed Rule by selecting the rdf:type triple pattern as the first triple
pattern for the query plan. Notice, for applications that mainly query
for vocabulary definitions the rule must be adjusted.

4. The Filter Rule proposes to prefer query plans in which filtering triple
patterns are placed as close to the first triple pattern as possible. A
filtering triple pattern in an ordered BGP contains only query variables
that are also contained in at least one preceding triple pattern. Formally,

Linked Data Query Processing based on Link Traversal 67

a triple pattern tpi in an ordered BGP B̄ = [tp1, ... , tpn] is a filtering
triple pattern if for each variable ?v ∈ vars(tpi) there exists a j < i such
that ?v ∈ vars(tpj). Additionally, any triple pattern tp with vars(tp) = ∅
is trivially a filtering triple pattern.

Rationale: The rationale of the Filter Rule is to reduce the number
of irrelevant intermediate solutions as early as possible and, thus, to
ultimately reduce query execution times: During query execution, each
input solution mapping µinput consumed by an iterator Ii is guaranteed
to contain bindings for all variables in Ii’s triple pattern tpi if and only if
tpi is a filtering triple pattern. Therefore, the application of these input
solution mappings to pattern tpi (cf. line 6 in Listing 1) will always result
in a triple pattern without variables, i.e., an RDF triple. If this triple is
contained in the query-local dataset, the iterator simply passes on the
current µinput; otherwise, it discards this intermediate solution. Thus,
any iterator that evaluates a filtering triple patterns may reduce the
number of intermediate solutions but it will never multiply this number;
i.e., it will not report more solution mappings than it consumes). For
iterators whose triple patterns are not filtering triple patterns such a
behavior cannot be predicted, neither a reduction nor a multiplication
of intermediate solutions.

We emphasize that the Filter Rule might not always be beneficial
because it reduces the likelihood for serendipitous discovery that we
discussed in Section 8.4.2. However, during an experimental evaluation
of the heuristic such a hypothetical reduction of benefit did not occur
in practice [33].

For our scenario in which we cannot assume any information about statis-
tics or data distribution when we start the execution of a query, using heuris-
tics, such as the ones introduced, is a suitable strategy for plan selection.
However, we note that after starting the query execution it becomes possible
to gather information and observe the behavior of the selected plan. This may
allow the query system to reassess candidate plans and, thus, to adapt or
even replace the running plan. To the best of our knowledge, such a strategy
of adaptive query planning has not yet been studied in the context of LTBQE
(nor for any other Linked Data query execution approach).

8.4.4 Improving Performance of the Approach

Independent of the query plan that has been selected to execute a CLD
query using a pipeline link traversing iterators, the URI lookups necessary for
augmenting the query-local dataset may require a significant amount of time
due to network latencies, etc. As a consequence, even if link traversing iterators
support a pipelined execution (i.e., complete materialization of intermediate
results is not necessary), the execution may block temporarily when an iterator
waits for the completion of certain URI lookups. In this section we conclude

68 Linked Data Management: Principles and Techniques

our discussion of the iterator implementation of LTBQE by outlining some
strategies on how to avoid such a temporary blocking and to reduce the impact
of network access times on the overall query execution time.

The dereferencing of URIs in line 7 of Listing 1 should be implemented
by asynchronous function calls such that multiple dereferencing tasks can be
processed in parallel. However, waiting for the completion of these derefer-
encing tasks in line 7 delays the execution of the GetNext function and, thus,
slows down query execution times. It is possible to address this problem with
the following prefetching strategy. Instead of dereferencing a URI at the time
when the corresponding data is required (i.e., at line 7), the dereferencing task
can be initiated as soon as the URI becomes part of a precomputed solution
mapping (i.e., at line 9). Then, the query engine can immediately proceed the
evaluation while the asynchronous dereferencing tasks are executed separately.
Whenever a subsequent iterator requires the corresponding dereferencing re-
sult, chances are high that the dereferencing task has already been completed.
Experiments show that this prefetching strategy reduces query execution times
to about 80% [36].

Further improvements can be achieved with an optimization approach pre-
sented by Hartig et al. [36]. The authors study the possibility to postpone
processing of intermediate solutions for which necessary URI lookups are still
pending. To conceptually integrate this idea into the iterator based imple-
mentation approach Hartig et al. propose to extend the iterator model with a
fourth function, called Postpone. The general semantics of this Postpone func-
tion is to treat the element most recently reported by the GetNext function as
if this element has not yet been reported. Hence, Postpone “takes back” this
element and GetNext may report it (again) in response to a later request. In
the particular case of link traversing iterators, these elements are the solution
mappings computed by the iterators. Thus, link traversing iterators may use
the proposed extension to temporarily ignore those input solution mappings
whose processing would cause blocking. This approach results in reducing the
overall query execution times to about 50% [36].

8.4.5 Alternative Implementation Approaches

We have already mentioned that the general LTBQE strategy introduced
by Hartig et al. [36, 37] can be implemented in multiple ways. Hence, using
iterators as presented in this chapter is only one possible implementation
approach. Other implementations studied so far can be summarized as follows:

• Ladwig and Tran propose an implementation that uses symmetric hash
join operators which are connected via an asynchronous, push-based
pipeline [49]. In later work, the authors extend this approach and in-
troduce the symmetric index hash join operator. This operator allows a
query execution system to incorporate a locally existing RDF data set
into the query execution [50].

Linked Data Query Processing based on Link Traversal 69

• Miranker et al. introduce another push-based implementation [57]. The
authors implement LTBQE using the well-known Rete match algorithm.

8.5 Summary

In this chapter we have introduced link traversal based query execution
(LTBQE), a novel query execution paradigm that is tailored to query Linked
Data on the Web. The most important feature of LTBQE is the possibility
to use data from initially unknown data sources. This possibility allows for
serendipitous discovery and, thus, enables applications that tap the full poten-
tial of the Web of Data. Another feature is that an LTBQE system does not
require any a-priori information about the queried Web. As a consequence,
such a system can directly be used without having to wait for the completion
of an initial data load phase or any other type of preprocessing. Hence, LTBQE
is most suitable for an “on-demand” live querying scenario where freshness
and discovery of results is more important than an almost instant answer.

70 Linked Data Management: Principles and Techniques

Bibliography

[1] Ben Adida, Mark Birbeck, Shane McCarron, and Ivan Herman. RDFa
Core 1.1. W3C Recommendation, June 2012. http://www.w3.org/TR/

rdfa-syntax/.

[2] Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton.
RDFa in XHTML: Syntax and Processing. W3C Recommendation, Oc-
tober 2008. http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/.

[3] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider. The Description Logic Handbook: Theory,
Implementation and Application. Cambridge University Press, 2002.

[4] Dave Beckett. RDF/XML Syntax Specification (Revised). W3C Recom-
mendation, February 2004. http://www.w3.org/TR/rdf-syntax-grammar/.

[5] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin
Carothers. Turtle: Terse RDF Triple Language. W3C Working Draft,
July 2012. http://www.w3.org/TR/turtle/.

[6] Tim Berners-Lee. Semantic Web Road map. W3C Design Issues, Septem-
ber 1998. http://www.w3.org/DesignIssues/Semantic.html.

[7] Tim Berners-Lee. Linked Data. W3C Design Issues, July 2006. http:

//www.w3.org/DesignIssues/LinkedData.html.

[8] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable
RDF syntax. W3C Team Submission, March 2011. http://www.w3.org/

TeamSubmission/n3/.

[9] Tim Berners-Lee, Jim Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 5(284):35–40, 2001.

[10] Diego Berrueta and Jon Phipps. Best Practice Recipes for Publishing
RDF Vocabularies. W3C Working Group Note, August 2008. http://www.
w3.org/TR/swbp-vocab-pub/.

[11] Mark Birbeck and Shane McCarron. CURIE Syntax 1.0: A syntax for
expressing Compact URIs. W3C Working Group Note, December 2010.
http://www.w3.org/TR/curie/.

71

72 Linked Data Management: Principles and Techniques

[12] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Chris-
tian Becker, Richard Cyganiak, and Sebastian Hellmann. DBpedia – a
crystallization point for the Web of Data. J. Web Sem., 7(3):154–165,
2009.

[13] Paolo Bouquet, Chiara Ghidini, and Luciano Serafini. Querying The Web
Of Data: A Formal Approach. In Proc. of the 4th Asian Semantic Web
Conference (ASWC), 2009.

[14] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language
1.0: RDF Schema. W3C Recommendation, February 2004. http://www.

w3.org/TR/rdf-schema/.

[15] Dan Brickley, R.V. Guha, and Andrew Layman. Resource Description
Framework (RDF) Schemas. W3C Recommendation, April 1998. http:

//www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

[16] Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. SPARQL Query
Language for RDF. W3C Recommendation, January 2008. http://www.

w3.org/TR/rdf-sparql-protocol/.

[17] Li Ding and Tim Finin. Characterizing the Semantic Web on the Web.
In Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel
Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo, editors, Interna-
tional Semantic Web Conference, volume 4273 of Lecture Notes in Com-
puter Science, pages 242–257. Springer, 2006.

[18] Dieter Fensel, Frank van Harmelen, Ian Horrocks, Deborah L. McGuin-
ness, and Peter F. Patel-Schneider. OIL: An ontology infrastructure for
the Semantic Web. IEEE Intelligent Systems, 16(2):38–45, 2001.

[19] Hector Garcia-Molina, Jennifer Widom, and Jeffrey D. Ullman. Database
Systems: The Complete Book. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2002.

[20] Paul Gearon, Alexandre Passant, and Axel Polleres. SPARQL 1.1
Federated Query. W3C Proposed Recommendation, November 2012.
http://www.w3.org/TR/sparql11-update/.

[21] Birte Glimm, Aidan Hogan, Markus Krötzsch, and Axel Polleres. OWL:
Yet to arrive on the Web of Data? In Christian Bizer, Tom Heath, Tim
Berners-Lee, and Michael Hausenblas, editors, LDOW, volume 937 of
CEUR Workshop Proceedings. CEUR-WS.org, 2012.

[22] Birte Glimm and Chimezie Ogbuji. SPARQL 1.1 Entailment Regimes.
W3C Candidate Recommendation, November 2012. http://www.w3.org/TR/
sparql11-entailment/.

Linked Data Query Processing based on Link Traversal 73

[23] Birte Glimm and Sebastian Rudolph. Status QIO: Conjunctive query
entailment is decidable. In Fangzhen Lin, Ulrike Sattler, and Miroslaw
Truszczynski, editors, KR. AAAI Press, 2010.

[24] Christine Golbreich and Evan K. Wallace. OWL 2 Web Ontology Lan-
guage: New Features and Rationale. W3C Recommendation, October
2009. http://www.w3.org/TR/owl2-new-features/.

[25] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM
Computing Surveys, 25(2):73–169, 1993.

[26] Jan Grant and Dave Beckett. RDF Test Cases. W3C Recommendation,
February 2004. http://www.w3.org/TR/rdf-testcases/.

[27] Bernardo Cuenca Grau, Boris Motik, Zhe Wu, Achille Fokoue, and
Carsten Lutz. OWL 2 Web Ontology Language: Profiles. W3C Rec-
ommendation, October 2009. http://www.w3.org/TR/owl2-profiles/.

[28] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker.
Description logic programs: combining logic programs with description
logic. In WWW, pages 48–57, 2003.

[29] Harry Halpin, Patrick J. Hayes, James P. McCusker, Deborah L. McGuin-
ness, and Henry S. Thompson. When owl:sameAs isn’t the same: An anal-
ysis of identity in Linked Data. In Peter F. Patel-Schneider, Yue Pan,
Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Z. Pan, Ian Horrocks, and
Birte Glimm, editors, International Semantic Web Conference (1), vol-
ume 6496 of Lecture Notes in Computer Science, pages 305–320. Springer,
2010.

[30] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language.
W3C Proposed Recommendation, November 2012. http://www.w3.org/TR/

sparql11-query/.

[31] Andreas Harth and Sebastian Speiser. On Completeness Classes for
Query Evaluation on Linked Data. In Proc. of the 26th AAAI Con-
ference, 2012.

[32] Olaf Hartig. How Caching Improves Efficiency and Result Completeness
for Querying Linked Data. In Proc. of the 4th Linked Data on the Web
workshop (LDOW) at WWW, 2011.

[33] Olaf Hartig. Zero-Knowledge Query Planning for an Iterator Implemen-
tation of Link Traversal Based Query Execution. In Proc. of the 8th
Extended Semantic Web Conference (ESWC), 2011.

[34] Olaf Hartig. SPARQL for a Web of Linked Data: Semantics and Com-
putability. In Proc. of the 9th Extended Semantic Web Conference
(ESWC), 2012.

74 Linked Data Management: Principles and Techniques

[35] Olaf Hartig. An Overview on Execution Strategies for Linked Data
Queries. Datenbank-Spektrum, 13(2), 2013.

[36] Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing
SPARQL Queries over the Web of Linked Data. In Proc. of the 8th
International Semantic Web Conference (ISWC), 2009.

[37] Olaf Hartig and Johann-Christoph Freytag. Foundations of Traversal
Based Query Execution over Linked Data. In Proc. of the 23rd ACM
Conference on Hypertext and Social Media (HT), 2012.

[38] Jonathan Hayes and Claudio Gutiérrez. Bipartite graphs as intermediate
model for RDF. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank
van Harmelen, editors, International Semantic Web Conference, volume
3298 of Lecture Notes in Computer Science, pages 47–61. Springer, 2004.

[39] Patrick Hayes. RDF Semantics. W3C Recommendation, February 2004.
http://www.w3.org/TR/rdf-mt/.

[40] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a
Global Data Space. Synthesis Lectures on the Semantic Web. Morgan &
Claypool Publishers, 2011.

[41] James Hendler and Deborah L. McGuinness. The DARPA Agent Markup
Language. IEEE Intelligent Systems, 15(6):67–73, 2000.

[42] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language
Combining OWL and RuleML. W3C Member Submission, May 2004.
http://www.w3.org/Submission/SWRL/.

[43] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. Re-
viewing the design of DAML+OIL: An ontology language for the Seman-
tic Web. In AAAI/IAAI, pages 792–797, 2002.

[44] Ian Jacobs and Norman Walsh. Architecture of the World Wide Web,
Volume One. W3C Recommendation, December 2004. http://www.w3.org/
TR/webarch/.

[45] Ilianna Kollia, Birte Glimm, and Ian Horrocks. SPARQL query answering
over OWL ontologies. In Grigoris Antoniou, Marko Grobelnik, Elena
Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De
Leenheer, and Jeff Z. Pan, editors, ESWC (1), volume 6643 of Lecture
Notes in Computer Science, pages 382–396. Springer, 2011.

[46] Markus Krötzsch, Frederick Maier, Adila Krisnadhi, and Pascal Hitzler.
A better uncle for OWL: nominal schemas for integrating rules and on-
tologies. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar,
M. P. Ravindra, Elisa Bertino, and Ravi Kumar, editors, WWW, pages
645–654. ACM, 2011.

Linked Data Query Processing based on Link Traversal 75

[47] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Description
Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos Fako-
takis, and Nikolaos M. Avouris, editors, ECAI, volume 178 of Frontiers
in Artificial Intelligence and Applications, pages 80–84. IOS Press, 2008.

[48] Markus Krötzsch, Frantisek Simancik, and Ian Horrocks. A Description
Logic Primer. CoRR, abs/1201.4089, 2012.

[49] Günter Ladwig and Duc Thanh Tran. Linked Data query processing
strategies. In Proc. of the 9th International Semantic Web Conference
(ISWC), 2010.

[50] Günter Ladwig and Duc Thanh Tran. SIHJoin: Querying Remote and Lo-
cal Linked Data. In Proc. of the 8th Extended Semantic Web Conference
(ESWC), 2011.

[51] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF)
Model and Syntax Specification. W3C Recommendation, February 1999.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

[52] Sean Luke, Lee Spector, David Rager, and James A. Hendler. Ontology-
based Web Agents. In Agents, pages 59–66, 1997.

[53] Alejandro Mallea, Marcelo Arenas, Aidan Hogan, and Axel Polleres. On
blank nodes. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Tay-
lor, Abraham Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva
Blomqvist, editors, International Semantic Web Conference (1), volume
7031 of Lecture Notes in Computer Science, pages 421–437. Springer,
2011.

[54] Frank Manola and Eric Miller. RDF Primer. W3C Recommendation,
February 2004. http://www.w3.org/TR/rdf-primer/.

[55] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology
Language Overview. W3C Recommendation, February 2004. http://www.

w3.org/TR/owl-features/.

[56] Alistair Miles, Thomas Baker, and Ralph Swick. Best Practice Recipes for
Publishing RDF Vocabularies. W3C Working Draft, March 2006. http://
www.w3.org/TR/2006/WD-swbp-vocab-pub-20060314/ (Later superseded by [10]).

[57] Daniel P. Miranker, Rodolfo K. Depena, Hyunjoon Jung, Juan F. Se-
queda, and Carlos Reyna. Diamond: A SPARQL Query Engine, for
Linked Data Based on the Rete Match. In Proc. of the Workshop on
Artificial Intelligence meets the Web of Data (AImWD) at ECAI, 2012.

[58] Sergio Muñoz, Jorge Pérez, and Claudio Gutierrez. Simple and efficient
minimal RDFS. J. Web Sem., 7(3):220–234, 2009.

76 Linked Data Management: Principles and Techniques

[59] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and
complexity of SPARQL. ACM Trans. Database Syst., 34(3), 2009.

[60] Axel Polleres. From SPARQL to rules (and back). In Carey L.
Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J.
Shenoy, editors, WWW, pages 787–796. ACM, 2007.

[61] Axel Polleres. How (well) do Datalog, SPARQL and RIF interplay? In
Pablo Barceló and Reinhard Pichler, editors, Datalog, volume 7494 of
Lecture Notes in Computer Science, pages 27–30. Springer, 2012.

[62] Eric Prud’hommeaux and Carlos Buil-Aranda. SPARQL 1.1 Federated
Query. W3C Proposed Recommendation, November 2012. http://www.w3.
org/TR/sparql11-federated-query/.

[63] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language
for RDF. W3C Recommendation, January 2008. http://www.w3.org/TR/

rdf-sparql-query/.

[64] Sebastian Rudolph. Foundations of Description Logics. In Axel Polleres,
Claudia d’Amato, Marcelo Arenas, Siegfried Handschuh, Paula Kro-
ner, Sascha Ossowski, and Peter F. Patel-Schneider, editors, Reasoning
Web, volume 6848 of Lecture Notes in Computer Science, pages 76–136.
Springer, 2011.

[65] Florian Schmedding. Incremental SPARQL Evaluation for Query An-
swering on Linked Data. In Proc. of the 2nd Int. Workshop on Consuming
Linked Data (COLD) at ISWC, 2011.

[66] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descrip-
tions with complements. Artif. Intell., 48(1):1–26, 1991.

[67] Michael Schneider. OWL 2 Web Ontology Language RDF-Based Se-
mantics. W3C Recommendation, October 2009. http://www.w3.org/TR/

owl2-rdf-based-semantics/.

[68] Andy Seaborne. SPARQL 1.1 Query Results CSV and TSV Formats.
W3C Proposed Recommendation, November 2012. http://www.w3.org/TR/

sparql11-results-csv-tsv/.

[69] Andy Seaborne. SPARQL 1.1 Query Results JSON Format. W3C
Proposed Recommendation, November 2012. http://www.w3.org/TR/

sparql11-results-json/.

[70] Manu Sporny. JSON-LD Syntax 1.0. W3C Working Draft, July 2012.
http://www.w3.org/TR/json-ld-syntax/.

[71] Patrick Stickler. CBD – Concise Bounded Description. W3C Recommen-
dation, June 2005. http://www.w3.org/Submission/CBD/.

Linked Data Query Processing based on Link Traversal 77

[72] Herman J. ter Horst. Completeness, decidability and complexity of en-
tailment for RDF Schema and a semantic extension involving the OWL
vocabulary. J. Web Sem., 3(2–3):79–115, 2005.

[73] Denny Vrandeč́ıc, Markus Krötzsch, Sebastian Rudolph, and Uta Lösch.
Leveraging non-lexical knowledge for the Linked Open Data Web. Review
of April Fool’s day Transactions (RAFT), 5:18–27, 2010.

[74] Gregory Todd Williams. SPARQL 1.1 Service Description. W3C
Proposed Recommendation, November 2012. http://www.w3.org/TR/

sparql11-service-description/.

[75] David Wood, Stefan Decker, and Ivan Herman, editors. Proceedings of
the W3C Workshop – RDF Next Steps, Stanford, Palo Alto, CA, USA,
June 26–27. Online at http://www.w3.org/2009/12/rdf-ws/, 2010.

