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Abstract. RSP-QL was developed by the W3C RDF Stream Process-
ing (RSP) community group as a common way to express and query
RDF streams. However, RSP-QL does not provide any way of annotat-
ing data on the statement level, for example, to express the uncertainty
that is often associated with streaming information. Instead, the only
way to provide such information has been to use RDF reification, which
adds additional complexity to query processing, and is syntactically ver-
bose. In this paper, we define an extension of RSP-QL, called RSP-QL?,
that provides an intuitive way for supporting statement-level annota-
tions in RSP. The approach leverages the concepts previously described
for RDF* and SPARQL*. We illustrate the proposed approach based on
a scenario from a research project in e-health. An open-source implemen-
tation of the proposal is provided and compared to the baseline approach
of using RDF reification. The results show that this way of dealing with
statement-level annotations offers advantages with respect to both data
transfer bandwidth and query execution performance.
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1 Introduction

Recent years have seen an increasing interest in processing and analyzing stream-
ing information as it is generated by applications, services, sensors, and smart
devices. RDF Stream Processing (RSP) leverages the principles of Linked Data
and the Semantic Web to cope with heterogeneity in data, but employs strate-
gies inspired from stream processing to cope with high velocity data streams.
During the last decade, several RSP systems and models have been proposed,
which have all provided their own syntax, semantics, and underlying assump-
tions about the nature of RDF streams [6,7]. The RSP community group3 was
formed to define a common model for producing, transmitting and continuously
querying RDF streams. The first version of this common query model (RSP-QL)

3https://www.w3.org/community/rsp/
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was proposed by Dell’Aglio et al. in 2014 [7], and the draft of the abstract syntax
and semantics was published by the RSP community group in 2016 [2].

Data generated by sensors is almost always coupled with provenance infor-
mation, or a level of uncertainty representing, for instance, lack of precision
or a knowledge gap. For example, all values reported by a temperature sensor
may be associated with some error describing a probability distribution. The
RDF specification provides a vocabulary that allows metadata to be represented
about RDF triples using RDF reification [11]. In practice, however, this is not
widely adopted as a standard for representing and managing such metadata on
the Semantic Web [8]. RDF?was recently proposed as a way to support a concise
representation of statement-level metadata, while remaining backwards compat-
ible with standard RDF [9,10]. By enclosing a triple using the strings ‘<<’ and
‘>>’, the extension allows it to be used in the subject or object position of other
triples. This allows statement-level metadata to be provided directly. For exam-
ple, the triple :bob :knows :alice could be annotated with the source wikipedia as
follows: <<:bob :knows :alice>> :source :wikipedia. Similarly, the authors’ propose
SPARQL? as an extension of SPARQL for querying RDF? data, where SPARQL?
supports similar nesting of triple patterns.

We propose an extension to RSP-QL that leverages RDF?/SPARQL? for an-
notating and querying streaming data. We show that the proposed approach has
several benefits over RDF reification when it comes to statement-level annota-
tions. The approach is motivated based on a use case from a current research
project, where we attempt to detect abnormal situations in an e-health scenario.

The rest of the paper is organized as follows. Section 2 briefly discusses the
relevant related work, while Section 3 describes a use-case scenario that both
motivates the proposed approach and exemplifies the requirements addressed by
the proposal. Section 4 describes the proposed approach informally, and Sec-
tions 5–6 provide the necessary formal definitions, where Section 5 defines the
data model and Section 6 defines the syntax and semantics of the proposed
RSP-QL extension. Section 7 provides an application-based evaluation of the
approach. Section 8 describes a prototype implementation and a performance
evaluation of the implemented system. Section 9 discusses the impact of the
presented work and Section 10 summarizes the main conclusions of the paper.

2 Related Work

Over the past decade, there has been a growing interest in providing models
and languages for combining the principles of the Semantic Web with streaming
information. RDF Stream Processing (RSP) systems aim to provide extensions
to RDF and SPARQL for representing and querying streaming data. However,
though several RSP systems have emerged that provide extensions and oper-
ators for this purpose [1,3,4,13,18], they typically provide different languages,
constructs, operators, and evaluation semantics [7]. The W3C RSP community
group was formed to define a common model for representing and querying
streaming RDF data. The proposed model and language, RSP-QL [7], can be



used to model the behavior of most of the current RSP systems, and provides
well-defined semantics for explaining query execution. However, none of the ex-
isting RSP approaches have given much attention to aspects related to repre-
senting metadata in streams, such as uncertainty or provenance. The RSP-QL
stream model allows such annotations to be provided on the graph level, but
annotations on the triple level are not supported.

The term statement-level metadata refers to data that captures information
about a single statement or fact. The RDF specification includes the notion
of RDF reification that lets a set of RDF triples describe some other RDF
triple [11]. The approach requires the inclusion of four additional RDF triples
for every statement where metadata is to be provided. Another approach is to
leverage named graphs, where the identifier of the graphs can be used to attach
metadata to statements [12]. However, this approach has the disadvantage of in-
hibiting the application of named graphs for other uses. Finally, singleton prop-
erties have been proposed as an alternative approach, where a distinct property
is provided for each triple to be annotated [15]. The singleton properties pro-
posal introduces a large number of unique predicates, which is atypical for RDF
data, and disadvantageous for common SPARQL optimization techniques [19].
Additionally, these approaches result in verbose queries [9]. For standard RDF,
there therefore exists no convenient way of annotating data with metadata on
the statement level [10]. The RDF?/SPARQL?approach was proposed as a way of
supporting a more intuitive representation, by allowing triples in the subject and
object positions of RDF statements [9,10]. In this paper, we propose to extend
RSP-QL based on this approach.

3 Use-Case Scenario

In this section, we describe a use-case scenario to exemplify the kinds of require-
ments that may be addressed by combining RSP-QL with RDF?/SPARQL?. The
scenario originates from an ongoing research project, E-care@home4, in which
the aim is to develop privacy-preserving AI-solutions for home care of elderly
patients. In addition to developing technical solutions, the project has put great
emphasis on studying the requirements of stakeholders. These requirements have
been documented in a project deliverable [14]. As part of this deliverable, a
number of personas and use-case scenarios were also developed, including the
following description of a scenario involving the patient Rut who has advanced
chronic obstructive pulmonary disease (COPD) and is multimorbid.

“The system can automatically sense abnormal situations, e.g. when certain
health parameters deviate from the normal values, or when the overall situation
as assessed by a multitude of sensors appears abnormal. When the system detects
such situations, it sends out an alarm to a suitable recipient based on the severity
of the deviation (e.g., emergency dispatch for a life-threatening deviation, the
patient’s physician if no immediate action is required, or next-of-kin if suitable).
[...] Today the system has detected an abnormal state. Rut appears to have been

4http://ecareathome.se/
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sitting in the same position in a chair in the living room for an unusually long
time given that there are no entertainment devices turned on at the moment.
Her heart rate is above normal, but her breathing is slower than normal. Small
motions indicate that she is not asleep, yet she is not moving much. Her oxygen
levels are about normal. The system decides to classify this as a low-emergency
abnormal state. The system also knows that Rut’s partner has left the house a
few hours ago. It therefore sends an alert to him [...] the alert reaches Rut’s
partner as he is already on his way home. He hurries home and opens the door
only to find out that Rut is in good health and has been enjoying a paperback copy
of the latest crime novel by a famous Swedish author for the past few hours.” [14]

Like any health-care system, the one envisioned by E-care@home sets high
requirements in terms of patient safety, system reliability, and transparency. To
this end, all the data that the system uses to draw conclusions and to generate
suggestions, or even to take action, must be accompanied by some assessed
confidence. For instance, in the scenario above, to put patient safety first the
system cannot afford to miss an abnormal and highly dangerous situation, but on
the other hand it needs to be able to disregard observations that are not reliable.
As an example, whenever a pulse oxymeter reports the oxygen saturation of a
patient, the system also needs to know the confidence that the system can put
in this value. The sensor may have a fixed confidence value, but the system may
also derive an adjusted value that takes into account contextual factors of the
measurement, such as the position of the sensor and the activity of the patient
at measurement time. Regardless of how the confidence value is derived, it needs
to be reported as part of the reported observation.

4 Overview of RSP-QL?

The main difference between RSP and traditional RDF/SPARQL processing is
that the former introduces a time dimension to processing [6]. The time dimen-
sion in RSP-QL is managed by allowing windows to define discrete subsets over
RDF streams, and at any point in time, a window can be queried as a regular
RDF dataset. The approach proposed in this paper extends RSP-QL in two fun-
damental ways: RDF streams are extended to support RDF?, and the supported
graph patterns in RSP-QL are extended to support those in SPARQL?. The ex-
ample in Listing 1.1 shows an RSP-QL? query that illustrates the main features
and language constructs.

The registered query is evaluated every 10 seconds. It defines a time-based
window with a width of 1 minute that slides every 10 seconds over the heart-
rate stream. The query then matches the heart-rate value and confidence of each
observation in the window using an RDF? pattern [9]. This is the only differ-
ence between RSP-QL and RSP-QL? in this query. The results are then filtered
based on a threshold, and the heart-rate value and timestamp of the matched
observations are reported. There are conceptually no limitations on the com-
plexity of the provided annotations, and they can, e.g., instead be represented
as confidence intervals or distributions rather than single values.



PREFIX ex: <http://www.example.org/ontology#>
PREFIX sosa: <http://www.w3.org/ns/sosa/>
REGISTER STREAM <heart-rate/alert> COMPUTED EVERY PT10S AS
SELECT ?hr ?time
FROM NAMED WINDOW <window/1> ON <http://stream/heart-rate> [RANGE PT1M STEP PT10S]
WHERE {

WINDOW <window/1> {
GRAPH ?g {

<<?obs sosa:hasSimpleResult ?hr>> ex:Confidence ?confidence .
FILTER(?confidence > 0.9 && ?hr > 120)

}
?g <generatedAt> ?time .

}
}

Listing 1.1: Example of an RSP-QL* query.

5 Data Model

This section defines the concepts that capture the notion of streams considered
by our approach. We begin with the basic notions of RDF and RDF?.

As usual [5,16], we assume three pairwise disjoint, countably infinite sets
I (IRIs), B (blank nodes), and L (literals). Then, an RDF triple is a tuple
(s, p, o) ∈ (I ∪ B)× I × (I ∪ B ∪ L), and an RDF graph is a set of RDF triples.
For such a triple (s, p, o), s is called the subject, p the predicate, and o the object.

RDF?extends this notion of triples by allowing the subject or the object to be
another triple [9]. This form of nesting of triples, which may be arbitrarily deep,
allows for statements to capture metadata about other statements. Formally, an
RDF? triple is defined recursively as follows [9]: (i) any RDF triple is an RDF?
triple, and (ii) given two RDF? triples t and t′, and the RDF terms s ∈ (I ∪ B),
p ∈ I, and o ∈ (I ∪ B ∪ L), the tuples (t, p, o), (s, p, t), and (t, p, t′) are RDF?
triples. Furthermore, a set of RDF? triples is called an RDF? graph.

The concept of an RDF dataset has been introduced to represent collections
of RDF graphs [5]. We extend this concept to cover RDF? graphs.

Definition 1. A named RDF?graph is a pair (n,G?) where n ∈ (I∪B), which
is called the graph name, and G? is an RDF? graph. An RDF? dataset is a set
D = {G?0, (n1, G?1), (n2, G?2), ..., (ni, G?i )}, where G?0 is an RDF? graph, called the
default graph of D, and (nk, G

?
k) is a named RDF? graph for all k ∈ {1, 2, ..., i}.

While the RDF model is atemporal, the notion of an RDF stream has been
introduced to capture the dynamic nature of streaming RDF data [7]. Along the
same lines, we define an RDF? stream as a time-ordered sequence of elements
that are captured by a specific form of RDF? datasets.

Definition 2. Let p be an IRI that denotes a predicate to capture timestamps for
named RDF? graphs. Then, an RDF? stream element E is an RDF? dataset
that consists of a default graph G?o and exactly one named RDF? graph (n,G?)
such that the default graph G?o contains one RDF triple of the form (n, p, τ),
where τ is a timestamp. To denote this timestamp τ in E we write τ(E).



Definition 3. An RDF? stream S is a potentially unbounded sequence of RDF?
stream elements such that for every pair of such elements Ei and Ej, where Ei
comes before Ej (i.e., S = (..., Ei, ..., Ej , ...)), the following properties hold:

1. τ(Ei) ≤ τ(Ej), and
2. the names of the single named RDF? graph (ni, G

?
i ) in Ei and of the single

named RDF? graph (nj , G
?
j ) in Ej are different (i.e., ni 6= nj).

A named RDF? stream is a pair (n, S) where n ∈ I and S is an RDF? stream.

We also need to define a notion of windows over such streams as a way of
referencing discrete portions of potentially infinite data streams [7].

Definition 4. A window W over an RDF? stream S is a finite set of RDF?
stream elements from S.

In this paper, we focus explicitly on temporal window operators (other win-
dow operators, such as count-based windows, can be defined in a similar manner).
To this end, we define a time-based window of an RDF? stream as a contiguous
set of elements from the stream whose timestamp is in a given interval.

Definition 5. Given a time interval [l, u), the time-based window over an
RDF? stream S for [l, u), denoted byW(S, l, u), is a window over S that is defined
as follows: W(S, l, u) = {E | E is in S and l ≤ τ(E) < u}.

Finally, we shall need a function that represents any window as an RDF?
dataset. Informally, this dataset consists of all the named RDF? graphs of all
RDF? stream elements within the window, and the default graph of this dataset
is constructed from the default graphs in all these RDF? stream elements.

Definition 6. Let W = {E1, E2, ..., En} be a window over some RDF? stream.
The dataset representation of W, denoted by DS(W), is the RDF? dataset
that is constructed as follows:

– the default graph of DS(W) is G?0 =
⋃

{G?
dflt,(n,G

?)}∈W G?dflt, and
– the set of named RDF? graphs in DS(W) is {(n,G?) | {G?dflt, (n,G?)} ∈ W}.

6 Syntax and Semantics of RSP-QL?

This section defines RSP-QL?, which is an RDF?-aware extension of RSP-QL.
RSP-QL, in turn, is an extension of SPARQL. Hence, our definitions in this sec-
tion extend RSP-QL [7] along the lines of how SPARQL? extends SPARQL [9,10],
and by also taking into account the abstract syntax and semantics draft of the
W3C RSP community group [2]. For the SPARQL-specific constructs we adopt
the algebraic SPARQL syntax introduced by Pérez et al. [16]. Due to space con-
straints, we limit ourselves to presenting only the core concepts of the language.



6.1 Syntax of RSP-QL? Queries

RSP-QL is an extension of SPARQL [17], and the basic building block is a basic
graph pattern (BGP), that is, a finite set of triple patterns. A triple pattern is a
tuple (s, p, o) ∈ (V ∪ B ∪ I)× (V ∪ I)× (V ∪ B ∪ I ∪ L), where V is a countably
infinite set of query variables that is disjoint from B, I, and L, respectively.

Like SPARQL? [9,10], RSP-QL? extends these notions further by support-
ing the concept of triple? patterns, which add the possibility to nest triple pat-
terns (arbitrarily deep), and which are defined recursively as follows [9,10]:
– any triple pattern is a triple? pattern, and
– given two triple? patterns tp and tp′, and s ∈ (I ∪ B ∪ V), p ∈ (I ∪ V), and
o ∈ (I∪B∪L∪V), then (tp, p, o), (s, p, tp), and (tp, p, tp′) are triple?patterns.

A finite set of triple? patterns is referred to as a BGP?.
On top of BGPs, RSP-QL supports all the other forms of graph patterns that

have been introduced for SPARQL, and RSP-QL adds a new form to match data
within windows of streaming data. We define a corresponding notion of patterns
for RSP-QL?, but for brevity we here focus only on the core constructs.

Definition 7. An RSP-QL? pattern is defined recursively as follows:
1. Any BGP? is an RSP-QL? pattern.
2. If n ∈ (V ∪ I) and P is a RSP-QL? pattern, then (WINDOW n P ) and

(GRAPH n P ) are RSP-QL? patterns.
3. If P1 and P2 are RSP-QL? patterns, then (P1 AND P2), (P1 OPT P2), and

(P1 UNION P2) are RSP-QL? patterns.

In addition to such patterns, every RSP-QL?query may declare windows over
named RDF? streams, which we capture by the concept of window declarations.

Definition 8. A window declaration is a tuple (uS , α, β, τ0) where uS ∈ I
is an IRI (representing the name of a named RDF? stream), α is a time dura-
tion (representing a window width), β is a time duration (representing a slide
parameter), and τ0 is a timestamp (representing a start time).

We now have everything required to define RSP-QL? queries, which consist
of an RSP-QL? pattern and window declarations that are associated with IRIs
to serve as names for the corresponding windows in the query.

Definition 9. An RSP-QL? query is a pair (ω, P ) where ω is a partial func-
tion that maps some IRIs in I to a window declaration, respectively, and P is
an RSP-QL? pattern such that for every sub-pattern (WINDOW n P ′) in P it
holds that if n ∈ I, then ω is defined for n, i.e., n ∈ dom(ω).

6.2 Semantics of RSP-QL? Queries

We now define the semantics of RSP-QL?queries, for which we have to introduce
some concepts used to define the query semantics of SPARQL and of SPARQL?.



The query semantics of SPARQL is based on the notion of solution map-
pings [16] that map query variables to blank nodes, IRIs, or literals. For SPARQL?,
this notion has been extended to also be able to map to RDF? triples. That is, a
solution?mapping is a partial function η : V → (T ∪I ∪B ∪L) where T denotes
the set of all RDF? triples [9,10]. The standard notions of compatibility, merging
and application of solution mappings can then be adapted as follows.

Definition 10. Two solution? mappings η, η′ are compatible if η(v) = η′(v)
for every variable v ∈ dom(η) ∩ dom(η′).

Definition 11. The merge of two compatible solution?mappings η and η′, de-
noted by η ∪ η′, is a solution?mapping η′′ with the following three properties:
– dom(η′′) = dom(η) ∪ dom(η′),
– η′′(v) = η(v) for all v ∈ dom(η), and
– η′′(v) = η′(v) for all v ∈ dom(η)′ \ dom(η).

Definition 12. The application of a solution?mapping η to an RSP-QL? pat-
tern P , denoted by η[P ], is the RSP-QL? pattern obtained by replacing all vari-
ables in P according to η.

We now define the corresponding algebra operators join, union, and left join.

Definition 13. Let Ω1 and Ω2 be sets of solution* mappings.
Ω1 on Ω2 = {η1 ∪ η2 | η1 ∈ Ω1, η2 ∈ Ω2, η and η′ are compatible}
Ω1 ∪Ω2 = {η | η ∈ Ω1 or η ∈ Ω2}
Ω1 d|><| Ω2 = (Ω1 on Ω2) ∪ {η ∈ Ω1 | ∀η′ ∈ Ω2 : η and η′ are not compatible}

Based on these algebra operators, RSP-QL? patterns are evaluated over a
background dataset and a set of named windows at a given timestamp.

Definition 14. Let W be a partial function that maps some IRIs in I to a
window over some RDF? stream, respectively, and P be an RSP-QL? pattern
such that for every sub-pattern (WINDOW n P ′) in P with n ∈ I, it holds that
W is defined for n, i.e., n ∈ dom(W ). Furthermore, let D be an RDF? dataset,
G be an RDF? graph, and τ be a timestamp. Then, the evaluation of P over
D and W at τ with G, denoted by JP KD,W,τG , is defined recursively as follows:

1. If P is a triple? pattern tp, then JP KD,W,τG = {η | dom(η) = var(tp) and
η(tp) ∈ G} where var(tp) denotes the set of variables occurring in tp.

2. If P is (GRAPH u P ′), then JP KD,W,τG = JP ′KD,W,τG′ where (u,G′) ∈ D
3. If P is (GRAPH ?x P ′), then JP KD,W,τG =

⋃
(u,G′)∈DJGRAPH u P ′KD,W,τG′

4. If P is (WINDOW u P ′), then JP KD,W,τG = JP ′KDS(W),∅,τ
G′ where W =W (u)

and G′ is the default graph of the RDF? dataset DS(W)

5. If P is (WINDOW ?x P ′), then JP KD,W,τG =
⋃
u∈dom(W )JWINDOW u P ′KD,W,τG

6. If P is (P1 AND P2), then JP KD,W,τG = JP1KD,W,τG on JP2KD,W,τG

7. If P is (P1 UNION P2), then JP KD,W,τG = JP1KD,W,τG ∪ JP2KD,W,τG

8. If P is (P1 OPT P2), then JP KD,W,τG = JP1KD,W,τG d|><| JP2KD,W,τG



It remains to define the semantics of RSP-QL?queries, which contain window
declarations in addition to an RSP-QL? pattern (cf. Definition 9).

Definition 15. Let S be a finite set of named RDF? streams and q = (ω, P ) be
an RSP-QL? query such that for every IRI uS ∈ dom(ω) there exists a named
RDF? stream (uS , S) ∈ S. Furthermore, let D be an RDF? dataset and τ be a
timestamp. The evaluation of q over D and S at τ , denoted by JqKD,S,τ, is
defined as JqKD,S,τ = JP KD,W,τG where G is the default graph of D and W is a
partial function such that dom(W ) = dom(ω) and for every IRI u ∈ dom(W ),
it holds that W (u) is the time-based window W(S, x − α, x) with (uS , S) ∈ S,
(uS , α, β, τ0) = ω(u) and x = τ0 + α + β × i for the greatest possible i ∈ N for
which x < τ .

7 Application-Based Evaluation

In this section, we evaluate RSP-QL? based on the application use-case scenario
introduced in Section 3. To this end, we make three assumptions: First, we as-
sume that all parameters about the patient are provided in separate streams.
Second, the thresholds for the physiological parameters are context dependent,
and we assume that the background data contains information about Rut’s ex-
pected values with respect to some activity. Third, we assume that all physiolog-
ical parameters are reported with a confidence value representing some inherent
uncertainty of the sample.

Listing 1.2 illustrates a typical query for the application scenario. For the
sake of readability, we have simplified the query slightly compared to the actual
project application. Additional optimization strategies would also be employed
in practice to provide improved scalability.

The inputs to the query are 5 different streams that report data about the
patient’s current heart rate, breathing rate, oxygen saturation, location (of both
Rut and Rut’s partner), and current activity, respectively. The activity stream
might have been created by another reasoning mechanism in the system, which
infers activities of daily life based on sensor inputs and the context. For each
window, the values are filtered for specific values or a confidence threshold,
and then the aggregated data is checked against the threshold values specific
to the current context of the patient (e.g., including the type of activity). If
these conditions are met, we consider it a low-emergency situation, as described
in the scenario outlined in Section 3. The resulting event is pushed to another
stream upon which the system can act appropriately. In our use-case scenario,
the system would first contact Rut’s partner. Similar queries could be set up to
deal with other situations that the system should be able to detect.

The application of RSP-QL? to this project use case shows that it is possible
to express the queries needed, and that the proposed language thereby fulfills
our use-case based requirements. In particular, it is worth noting the compact-
ness and relative readability of the query in Listing 1.2, as compared to the
corresponding RDF reification query5 (excluded to to space constraints).

5 https://github.com/keski/RSPQLStarEngine/tree/master/publications/semantics2019
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BASE <http://base/>
PREFIX ex: <http://www.example.org/ontology#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX sosa: <http://www.w3.org/ns/sosa/>

REGISTER STREAM <alert/lowEmergencyAbnormalState> COMPUTED EVERY PT10S AS

SELECT ?activity (AVG(?hr) AS ?avgHr) (AVG(?br) AS ?avgBr) (AVG(?ox) AS ?avgOx)
FROM NAMED WINDOW <w/1> ON <s/activity> [RANGE PT10M STEP PT10S]
FROM NAMED WINDOW <w/2> ON <s/location> [RANGE PT10M STEP PT10S]
FROM NAMED WINDOW <w/3> ON <s/heart> [RANGE PT1M STEP PT10S]
FROM NAMED WINDOW <w/4> ON <s/breathing> [RANGE PT1M STEP PT10S]
FROM NAMED WINDOW <w/5> ON <s/oxygen> [RANGE PT1M STEP PT10S]
WHERE {

?person a foaf:Person ;
foaf:name "Rut" ;
ex:home ?home ;
ex:partner ?partner .

[] a ex:NormalSituation ;
ex:forPerson ?person ;
ex:forActivity ?activity ;
ex:expectedHeartRate [ ex:upperBound ?hrMax ] ;
ex:expectedBreathingRate [ ex:lowerBound ?brMin ] ;
ex:expectedOxygenSaturation [ ex:lowerBound ?oxMin ; ex:upperBound ?oxMax ] .

WINDOW <w/1> { # Current activity, reported by the system
GRAPH ?g1 {

[ a sosa:Observation ;
sosa:featureOfInterest ?person ;
sosa:hasSimpleResult ?activity ] .

}
}
WINDOW <w/2> { # Location of Rut’s partner

GRAPH ?g2 {
[ a sosa:Observation ;
sosa:featureOfInterest ?partner ;
sosa:hasSimpleResult ?loc ] .

FILTER(?loc != ?home)
}

}
WINDOW <w/3> { # Heart rate

GRAPH ?g3 {
?o3 a sosa:Observation ;

sosa:featureOfInterest ?person .
<<?o3 sosa:hasSimpleResult ?hr>> ex:confidence ?c3 .
FILTER(?c3 > 0.95)

}
}
WINDOW <w/4> { # Breathing rate

GRAPH ?g4 {
?o4 a sosa:Observation ;

sosa:featureOfInterest ?person .
<<?o4 sosa:hasSimpleResult ?br>> ex:confidence ?c4 .
FILTER(?c4 > 0.95)

}
}
WINDOW <w/5> { # Oxygen saturation

GRAPH ?g5 {
?o5 a sosa:Observation ;

sosa:featureOfInterest ?person .
<<?o5 sosa:hasSimpleResult ?ox>> ex:confidence ?c5 .
FILTER(?c5 > 0.95)

}
}

}
GROUP BY ?activity ?hrMax ?brMin ?oxMin ?oxMax
HAVING(?avgHr > ?hrMax && ?avgBr < ?brMin && ?oxMin <= ?avgOx && ?avgOx <= ?oxMax)

Listing 1.2: The RSP-QL? query used in the use-case evaluation.



8 Performance Evaluation

In this section, we begin by briefly describing a prototype implementation of the
proposed approach. We then report on the effects of the proposed RDF stream
model with respect to data bandwidth, and compare it with a baseline approach
of using RDF reification. Finally, we compare the query execution performance
of the prototype when using RDF? as opposed to RDF reification, while varying
the number of annotated triples per streamed element.

All experiments were run on a MacBook Pro with 16 GB 1600 MHz DDR3
memory, and a 2.8 GHz Intel Core i7. The experiments were run using Java
1.8.0 with 2048 MB allocated for the JVM. All experiments were preceded by
warm-up runs and averages for execution times were collected only after memory
usage had stabilized.

8.1 Prototype implementation

We implemented the prototype using Apache Jena6 and RDFstarTools7, where
the latter provides a collection of Java libraries for processing RDF? data and
SPARQL?queries. Additionally, we implemented a separate RSP-QL?query parser
and integrated it with the standard Jena architecture, along with an extension of
Jena’s query class to support the additional syntax elements defined in RSP-QL?.

For the query execution, the implementation provides an extension of Jena’s
query engine and query execution, supporting the new query operators. During
query execution, all windows over streams are materialized as individual RDF?
datasets. The execution’s active dataset then changes as needed when a window
operation is evaluated. To improve evaluation efficiency, all parsed nodes are
encoded as integers in one of two dictionaries: the node dictionary or the ref-
erence dictionary. Regular RDF nodes are added to the node dictionary, while
triple nodes are added to the reference dictionary, which (recursively) encodes
each separate node of the triple. All nodes, regardless of type, are internally
represented as an integer, where the most significant bit signals whether the
ID represents a regular node or a reference triple. This allows the system to
quickly check how a node should be decoded. Encoding and decoding iterators
are provided to support moving between ID-based iterators, and Jena’s standard
iterator implementations.

The prototype is provided as open-source8 under the MIT License. The un-
derlying data structures can easily be changed by providing alternative imple-
mentations for the corresponding interfaces.

8.2 Serialization Overhead

One of the side-effects of using RDF reification to annotate triples is that it
increases the size of the dataset, since for each reification triple four additional

6https://jena.apache.org/ (version 3.8.0)
7https://github.com/RDFstar/RDFstarTools (version from 2019-02-28)
8https://github.com/keski/RSPQLStarEngine

https://jena.apache.org/
https://github.com/RDFstar/RDFstarTools
https://github.com/keski/RSPQLStarEngine


triples have to be added. Thus, one of the benefits of the proposed extension
is the reduced overhead involved in transferring statement-level annotations in
data streams. To compare the impact on bandwidth requirements, we compared
the overhead in terms of bytes for each of the two approaches. The data was
serialized using TriG?, which is an extension of Turtle? [9] for supporting named
graphs, and compressed9.

The amount of metadata per annotated triple impacts the relative overhead
of the two approaches. For this evaluation, the TriG? serialization of each RDF?
stream element contains declarations of one prefix, a base IRI, and a single
metadata statement per annotated triple. Fig. 1 shows the bandwidth required
by the approaches as a function of the number of annotated triples per streamed
element. The results show that the amount of bytes required when using RDF?
is around half of what is required when using RDF reification.

8.3 Query Execution Performance

The performance of the approach was evaluated on the prototype implemen-
tation. The streamed elements contained a single confidence annotated triple,
where the number of additional triples annotated with some other metadata
predicate varied between experiments runs. A single evaluation query was used
to match and filter all triples annotated with the confidence value. We compared
query execution times when representing the metadata using RDF?and querying
it using RSP-QL? versus representing the metadata using RDF reification and
querying it using pure reification-based RSP-QL queries. The prototype applies
no specific optimization techniques for the queries; thus, the two approaches
differ only with respect to how statement-level metadata is represented inter-
nally. The RDF reification approach simply uses regular triple-pattern match-
ing, whereas the RDF? approach represents the annotated triples as resources
on the physical level. For the RDF reification query, we provided an additional
version of the query optimized based on the heuristics described by Tsialiamanis
et al. [19], where the order of the matched triple patterns was determined based
on selectivity. Fig. 2 presents the average query execution times. The results
show that the advantage of the proposed approach grows with the number of
distinct triples annotated in each streamed element, but that this difference can
potentially be reduced by applying established optimization heuristics.

9 Discussion

The proposed approach provides a compact and intuitive way for both represent-
ing and querying annotated triples. Other approaches that could be considered
for this purpose include single-triple named graphs [12], singleton properties [15],
and RDF reification [11], but these approaches come with various drawbacks.

9Compression here included the removal of excessive whitespace characters, the use
of prefixes, and the use of predicate lists where appropriate.
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The application of named graphs inhibits the use of the graph name for other
purposes, which means it is not compatible with the structure of RDF stream
elements. Singleton properties introduce large numbers of unique predicates,
which can adversely affect query execution performance. RDF reification, on
the other hand, is both part of the RDF standard and can be supported in
RSP-QL. However, RDF reification is verbose, both with respect to representing
and querying data.

We note that RDF? and SPARQL? may be understood simply as syntactic
sugar on top of RDF and SPARQL [9], and by extension this applies to the
approach presented in this paper. However, the evaluation of the prototype im-
plementation illustrates that representing annotated triples as resources on the
physical level can have positive effects on the query execution level. When match-
ing a single RDF reification triple, a total of four additional triple patterns have
to be evaluated. In fact, due to this inefficiency, many RDF stores implement
specific strategies for representing annotated triples [8]. For example, Virtuoso10

encodes RDF reification statements as quads, Apache Jena11 provides an im-
plementation of a node type with direct access to the statement it reifies, and
Blazegraph12 uses an approach similar to the one implemented in our prototype.

RDF?and SPARQL?, and thus RSP-QL?, simplifies the representation of com-
plex scenarios, both from the perspective of modeling and of querying annotated
metadata. For example, we may want to treat an RDF statement differently de-
pending on whether the uncertainty associated with it has been automatically

10https://virtuoso.openlinksw.com/
11https://jena.apache.org/
12https://wiki.blazegraph.com/

https://virtuoso.openlinksw.com/
https://jena.apache.org/
https://wiki.blazegraph.com/


generated by a sensor, or if it originates from a physician. Querying this using
RSP-QL? simply involves having a triple? pattern with two layers of nesting.

As part of future work, we plan on relaxing some of the assumptions made in
the semantics, and add support for additional features defined in RSP-QL, such
as count-based window operators and output stream operators.

10 Conclusion

In this paper, we have presented a novel way of annotating and querying statement-
level metadata in RDF Stream Processing (RSP), and formally defined the new
continuous query language RSP-QL?. The approach extends RDF streams to
allow triples to directly use other triples in the subject and object positions, and
similarly extends the current version of RSP-QL to query these, by leveraging
and building on the concepts previously proposed for RDF?and SPARQL* [9,10].

The proposed approach was applied in a use case from an e-health research
project, where multiple data streams have to be queried in parallel, and over ex-
tended periods of time, to detect possibly abnormal situations. The results show
that RSP-QL?meets all our use-case requirements, and provides a compact and
intuitive way of expressing and querying statement-level metadata, compared
with the baseline approach of using RDF reification. Furthermore, the proto-
type implementation presented in the paper, which is provided as open-source,
demonstrates benefits over the baseline approach, both with respect to the band-
width required for data transfer and with respect to query execution performance
over statement-level annotations. RDF? is a syntactically more compact way to
express metadata annotations, and our experiments show that this difference is
large enough to have an impact in deployed real-world systems and applications,
where bandwidth may be limited. Although our prototype implementation is
not optimized for query performance, we were able to demonstrate that the ap-
proach was faster with respect to query execution performance, when compared
to using standard RDF reification.

This is the first work on RSP that has focused on supporting annotations on
the statement level. We believe that the proposed approach provides an intu-
itive and compact way for representing and querying statement-level metadata,
and that this work provides a good foundation for future research on efficient
management of, e.g., uncertainty and provenance, in RDF data streams.
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